Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humble yeast sheds light on promising anti-cancer drug

19.10.2005


Research from the Journal of the National Cancer Institute



The humble yeast has revealed the molecular workings of an anti-cancer drug that stops the growth and spread of tumours in humans by starving their blood supply.

Until now, University of New South Wales scientists who developed the drug (GSAO) knew that it was lethal against endothelial cells but not why it had no direct impact on tumours themselves.


The new study reveals that endothelial cells lack the "transport protein" that tumours use to eject foreign molecules that invade their cell structure.

Endothelial cells are the building blocks of blood vessels. Cancer cells rely on blood vessel growth, known as angiogenesis, to grow and spread to other parts of the body.

"It’s very sexy science," says one the research authors, Professor Philip Hogg, a biochemist with the UNSW Centre for Vascular Research and the Children’s Cancer Institute Australia. "We now understand how an anti-cancer drug works in humans thanks to genetic studies using the humble yeast cell."

Published in today’s edition of the prestigious Journal of the National Cancer Institute, the study reveals how researchers "genetically fingerprinted" the transport protein by using genetically modified (mutant) yeast cells. The researchers used 4800 yeast mutants that represent every non-essential gene in the genome.

"The mutant yeast cells that were vulnerable to the drug lacked the protein that enables them to eject the drug across their cell membrane," says Professor Ian Dawes, a study co-author from the UNSW Ramaciotti Centre for Gene Function Analysis.

"Yeast cells that lacked the protein died, while those that had the protein didn’t," says Dawes. "That told us there was a specific gene encoding a protein that’s vital for a cell to protect itself against GSAO."

Once the researchers knew this they looked for and found a corresponding protein in humans, known as a multi-drug resistance associated protein (MRP).

"The presence of these transport proteins in tumours is one of the reasons that anti-cancer drugs such as chemotherapy medicines fail against cancer," says Professor Hogg.

"The reason that GSAO is effective is that it targets tumours indirectly by attacking the endothelial cells that lack this transport protein. So GSAO is lethal against tumours because it chokes the blood supply they rely on to grow and spread."

The amazing thing is that we’ve used the humble yeast, which is a less sophisticated cell than a human cell, to reveal the molecular secrets of the drug and how it works in humans.

The GSAO story

GSAO (glutathionarsenoxide) is an angiogenesis inhibitor drug that "starves" tumour cells by stopping them from making blood vessels -- known as angiogenesis - that tumours rely on to grow and spread. Professor Philip Hogg and Dr Neil Donoghue from the University of New South Wales invented GSAO in 1999.

Because all solid tumours of children and adults, such as cancer of the breast, prostate, colon, lung and brain rely on angiogenesis, a single anti-angiogenic drug should be effective against all tumour types. This is in contrast to chemotherapy drugs and radiotherapy that are often effective only against certain tumour types. Also, because GSAO is not a conventional "cytotoxic" drug that poisons cancer cells, it does not cause unpleasant side effects such as nausea and hair loss.

Small blood vessels consist primarily of endothelial cells that line their interior. They are genetically stable, in contrast to tumour cells that are inherently unstable. Most tumour cells have a propensity for mutation and genetic diversity, and are therefore likely to produce drug resistant cells. The genetic stability of endothelial cells suggests that anti-angiogenic drugs that target the stimulated endothelial cells in tumours will be less prone to resistance than the chemotherapeutic agents that target the tumour cells.

While GSAO would not "cure" people of the cancer, it should stop most types of tumours in their tracks. This means that the focus of cancer treatment and research could move away from curing the disease to one of managing it on a life-long basis, such as diabetes.

GSAO will be first tested in cancer patients in 2006.

Prof. Philip Hogg | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>