Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humble yeast sheds light on promising anti-cancer drug

19.10.2005


Research from the Journal of the National Cancer Institute



The humble yeast has revealed the molecular workings of an anti-cancer drug that stops the growth and spread of tumours in humans by starving their blood supply.

Until now, University of New South Wales scientists who developed the drug (GSAO) knew that it was lethal against endothelial cells but not why it had no direct impact on tumours themselves.


The new study reveals that endothelial cells lack the "transport protein" that tumours use to eject foreign molecules that invade their cell structure.

Endothelial cells are the building blocks of blood vessels. Cancer cells rely on blood vessel growth, known as angiogenesis, to grow and spread to other parts of the body.

"It’s very sexy science," says one the research authors, Professor Philip Hogg, a biochemist with the UNSW Centre for Vascular Research and the Children’s Cancer Institute Australia. "We now understand how an anti-cancer drug works in humans thanks to genetic studies using the humble yeast cell."

Published in today’s edition of the prestigious Journal of the National Cancer Institute, the study reveals how researchers "genetically fingerprinted" the transport protein by using genetically modified (mutant) yeast cells. The researchers used 4800 yeast mutants that represent every non-essential gene in the genome.

"The mutant yeast cells that were vulnerable to the drug lacked the protein that enables them to eject the drug across their cell membrane," says Professor Ian Dawes, a study co-author from the UNSW Ramaciotti Centre for Gene Function Analysis.

"Yeast cells that lacked the protein died, while those that had the protein didn’t," says Dawes. "That told us there was a specific gene encoding a protein that’s vital for a cell to protect itself against GSAO."

Once the researchers knew this they looked for and found a corresponding protein in humans, known as a multi-drug resistance associated protein (MRP).

"The presence of these transport proteins in tumours is one of the reasons that anti-cancer drugs such as chemotherapy medicines fail against cancer," says Professor Hogg.

"The reason that GSAO is effective is that it targets tumours indirectly by attacking the endothelial cells that lack this transport protein. So GSAO is lethal against tumours because it chokes the blood supply they rely on to grow and spread."

The amazing thing is that we’ve used the humble yeast, which is a less sophisticated cell than a human cell, to reveal the molecular secrets of the drug and how it works in humans.

The GSAO story

GSAO (glutathionarsenoxide) is an angiogenesis inhibitor drug that "starves" tumour cells by stopping them from making blood vessels -- known as angiogenesis - that tumours rely on to grow and spread. Professor Philip Hogg and Dr Neil Donoghue from the University of New South Wales invented GSAO in 1999.

Because all solid tumours of children and adults, such as cancer of the breast, prostate, colon, lung and brain rely on angiogenesis, a single anti-angiogenic drug should be effective against all tumour types. This is in contrast to chemotherapy drugs and radiotherapy that are often effective only against certain tumour types. Also, because GSAO is not a conventional "cytotoxic" drug that poisons cancer cells, it does not cause unpleasant side effects such as nausea and hair loss.

Small blood vessels consist primarily of endothelial cells that line their interior. They are genetically stable, in contrast to tumour cells that are inherently unstable. Most tumour cells have a propensity for mutation and genetic diversity, and are therefore likely to produce drug resistant cells. The genetic stability of endothelial cells suggests that anti-angiogenic drugs that target the stimulated endothelial cells in tumours will be less prone to resistance than the chemotherapeutic agents that target the tumour cells.

While GSAO would not "cure" people of the cancer, it should stop most types of tumours in their tracks. This means that the focus of cancer treatment and research could move away from curing the disease to one of managing it on a life-long basis, such as diabetes.

GSAO will be first tested in cancer patients in 2006.

Prof. Philip Hogg | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>