Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humble yeast sheds light on promising anti-cancer drug

19.10.2005


Research from the Journal of the National Cancer Institute



The humble yeast has revealed the molecular workings of an anti-cancer drug that stops the growth and spread of tumours in humans by starving their blood supply.

Until now, University of New South Wales scientists who developed the drug (GSAO) knew that it was lethal against endothelial cells but not why it had no direct impact on tumours themselves.


The new study reveals that endothelial cells lack the "transport protein" that tumours use to eject foreign molecules that invade their cell structure.

Endothelial cells are the building blocks of blood vessels. Cancer cells rely on blood vessel growth, known as angiogenesis, to grow and spread to other parts of the body.

"It’s very sexy science," says one the research authors, Professor Philip Hogg, a biochemist with the UNSW Centre for Vascular Research and the Children’s Cancer Institute Australia. "We now understand how an anti-cancer drug works in humans thanks to genetic studies using the humble yeast cell."

Published in today’s edition of the prestigious Journal of the National Cancer Institute, the study reveals how researchers "genetically fingerprinted" the transport protein by using genetically modified (mutant) yeast cells. The researchers used 4800 yeast mutants that represent every non-essential gene in the genome.

"The mutant yeast cells that were vulnerable to the drug lacked the protein that enables them to eject the drug across their cell membrane," says Professor Ian Dawes, a study co-author from the UNSW Ramaciotti Centre for Gene Function Analysis.

"Yeast cells that lacked the protein died, while those that had the protein didn’t," says Dawes. "That told us there was a specific gene encoding a protein that’s vital for a cell to protect itself against GSAO."

Once the researchers knew this they looked for and found a corresponding protein in humans, known as a multi-drug resistance associated protein (MRP).

"The presence of these transport proteins in tumours is one of the reasons that anti-cancer drugs such as chemotherapy medicines fail against cancer," says Professor Hogg.

"The reason that GSAO is effective is that it targets tumours indirectly by attacking the endothelial cells that lack this transport protein. So GSAO is lethal against tumours because it chokes the blood supply they rely on to grow and spread."

The amazing thing is that we’ve used the humble yeast, which is a less sophisticated cell than a human cell, to reveal the molecular secrets of the drug and how it works in humans.

The GSAO story

GSAO (glutathionarsenoxide) is an angiogenesis inhibitor drug that "starves" tumour cells by stopping them from making blood vessels -- known as angiogenesis - that tumours rely on to grow and spread. Professor Philip Hogg and Dr Neil Donoghue from the University of New South Wales invented GSAO in 1999.

Because all solid tumours of children and adults, such as cancer of the breast, prostate, colon, lung and brain rely on angiogenesis, a single anti-angiogenic drug should be effective against all tumour types. This is in contrast to chemotherapy drugs and radiotherapy that are often effective only against certain tumour types. Also, because GSAO is not a conventional "cytotoxic" drug that poisons cancer cells, it does not cause unpleasant side effects such as nausea and hair loss.

Small blood vessels consist primarily of endothelial cells that line their interior. They are genetically stable, in contrast to tumour cells that are inherently unstable. Most tumour cells have a propensity for mutation and genetic diversity, and are therefore likely to produce drug resistant cells. The genetic stability of endothelial cells suggests that anti-angiogenic drugs that target the stimulated endothelial cells in tumours will be less prone to resistance than the chemotherapeutic agents that target the tumour cells.

While GSAO would not "cure" people of the cancer, it should stop most types of tumours in their tracks. This means that the focus of cancer treatment and research could move away from curing the disease to one of managing it on a life-long basis, such as diabetes.

GSAO will be first tested in cancer patients in 2006.

Prof. Philip Hogg | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>