Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

E-cadherin, that cellular touch so important in cancer

17.10.2005


E-cadherin is a molecule involved in adhesion between epithelial cells that also seems to have a protective role in cancer, since its loss is associated with tumour progression and metastases formation in a series of different cancers. How this happens, however, is not clear but new research, about to be published on the "Journal of Experimental Cell Research", shows that cells that lose E-cadherin are more resistant to programmed cell death. Programmed cell death, also called apoptosis, is the mechanism by which the body eliminates unwanted or damaged cells, like those that can lead to cancer, by inducing them to die. The research about to be published also suggests that bcl-2 - a protein that affects cell division and whose abnormal production contributes to a variety of cancer - seems to have a role mediating E-cadherin effect. These results, although preliminary, help the understanding of E-cadherin role in cancer and consequently might contribute to the development of new therapeutics.

Cell survival depends on signals from the environment, such as those provided by adhesion molecules that mediate contacts between cells or between cells and the surrounding medium (the matrix). If these interactions cease to exist, the cells are programmed to die, which prevents their migration and growth in places where they do not belong, and consequently, where they have no physiological role. This is particularly important when we think about metastases - a process where cancer spreads to distant sites in the body to establish new tumours - which are associated with 90% of all the cancer deaths.

It is known that loss of adhesion between cells and between cells and the matrix is a pre-requisite for the detachment and migration of the tumour cells, and as a result it is believed that functional adhesion molecules are important in its prevention. One such example is E-cadherin, an adhesion molecule of epithelial cells, which is found altered in several cancers, and that, while intact, stops the tumour spreading into surrounding tissues. E-cadherin is especially interesting if we consider that 80-90% of tumours originate from epithelial cells, even if the majority of those result from accumulation of several mutations in several genes.



Hereditary diffuse gastric cancer (HDGC), however, is a hereditary disease caused by mutations in the E-cadherin gene and in consequence is the perfect model to study the role of this molecule in cancer. And in fact, research in HDGC showed that cancer cells, which do not have a functional E-cadherin, are, not only capable of invading surrounding tissues but also able to survive and grow in the absence of contact with other cells. This last observation has led Gianpaolo Suriano, Raquel Seruca and colleagues from Portugal, Canada and Japan to hypothesize that maybe E-cadherin, when intact, not only prevents the migration of cancerous cells but is also involved in the process of cellular death and so have a dual role in cancer prevention.

To test their theory the team of scientists exposed cells with a functional or a non-functional E-cadherin, as well as cells with no E-cadherin to several stimuli capable of induce cell death, including a chemical used to destroy cancer cells. Confirming their hypothesis, results showed that cells without a functional E-cadherin were 3 to 4 times more resistant to cell death, indicating that this molecule is in fact involved in the mechanism of induced cell death. Also, very interestingly, Suriano and colleagues found that this resistance to death seemed to be mediated through bcl-2, a protein that when over produced leads to cell resistance to apoptosis, a hallmark of malignant processes.

Suriano, Seruca and colleagues’ results support the hypothesis that adhesion molecules are more than simple mediators of cell contact and adhesion and calls for further investigation into these proteins.

The fact that E-cadherin is involved in programmed cell death - a vital biological mechanism that assures the clearance of unwanted cells, that, if not destroyed, could lead to disease, and in extreme cases to malignant processes - is important for the understanding of cancers where E-cadherin function is affected and so, also to the development of future therapies. In fact, if further research confirms that bcl-2 is indeed involved in these type of cancers, therapy presently being developed for bcl-2 might be used in the future to control tumour development, which results from E-cadherin deregulation.

As well worthy of note, is the fact that one of the chemicals employed by the researchers to induce cell death in these experiments, is normally used, together with other drugs, to treat advanced cancers including epithelial tumours resulting from E-cadherin loss. This result questions its effectiveness in this type of tumours and calls for the need of further research on the subject.

Piece researched and written by:
Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.sciencedirect.com/science/journal/00144827
http://www.linacre.ox.ac.uk

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>