Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study finds direct role for glial cells in brain cross-talk

11.10.2005


Findings may help elucidate mechanisms of wake-sleep transitions and epileptic seizures


Astrocytes, a non-neuronal cell of the brain, are responsible for coordinating neuronal networks. Courtesy of Olivier Pascual and Philip Haydon, University of Pennsylvania School of Medicine, Department of Neuroscience



Researchers at the University of Pennsylvania School of Medicine have demonstrated that star-shaped glial cells in the brain called astrocytes are directly involved in regulating communication between neurons. A central finding of the study is that astrocytes modulate the level of a signaling molecule called adenosine, which is thought to be important in controlling wake-to-sleep transitions and epileptic seizures.

"This finding may cause neuroscientists to radically alter their view of the role of astrocytes as merely supportive to one of actively communicating with and instructing neurons," states senior author Philip G. Haydon, PhD, Professor of Neuroscience. "Astrocytes are not just the ’kitchen cells’ of the brain, providing nutritional support, but instead also help the neurons talk to each other." Haydon and colleagues published their results in last week’s issue of Science.


The central nervous system, which includes the brain and spinal cord, is composed of specialized cells called neurons that send out and receive chemical signals called neurotransmitters across a space called the synapse. This process results in transmission of a nerve impulse. Historically, the glial cell or astrocyte was considered to be a support cell and to play no active role in regulating nerve impulse transmission. However, recent research by Haydon and other investigators has indicated that glial cells do produce chemical transmitters called gliotransmitters and that these chemical signals are recognized by the neurons. The studies that have shown capability were conducted on isolated nerve cells or on slices of brain tissue.

In this most recent study, the researchers made genetic manipulations to glial cells in live mice, thus directly demonstrating how astrocytes function in the brain. The mice were engineered to produce a protein called SNARE in their astrocytes. When the SNARE protein was produced, the amount of adenosine decreased.

When adenosine accumulated, nerve impulses were suppressed and could not be transmitted across the synapse. This helps explain why high adenosine levels can suppress epileptic seizures.

In contrast, low levels of adenosine increased the transmission of nerve impulses. The modulation of neuronal activity through the regulation of the level of adenosine in the synapse may explain the nature of wake-to-sleep transitions during periods of drowsiness.

"The next step is to study the behavior of these mice during manipulation of adenosine levels in the brain," says Haydon.

The study was a collaboration between Haydon and Stephen Moss at Penn and Ken McCarthy, University of North Carolina, Chapel Hill. The lead author was Olivier Pascual, a post-doctoral fellow in Penn’s Department of Neuroscience. Co-authors are Kristi Casper, Cathryn Kubera, Jing Zhang, Raquel Revilla-Sanchez, Jai-Yoon Sul and HajimeTakano.

This study was funded by the National Institute of Neurological Disorders and Stroke and the National Institute of Mental Health. This release and related images can also be found at: www.uphs.upenn.edu/news

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>