Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Marine snail’s neural network sheds light on the basis for flexible behavior


From snail to man, one of the hallmarks of the brain is the ease with which behavioral variants are generated--for example, humans can easily walk with different stride lengths or different speeds. By studying how a relatively simple motor network of the marine snail Aplysia produces variants of a particular feeding behavior, researchers have found that the ability to generate a large number of behavioral variants stems from the elegant hierarchical architecture of the brain’s motor network.

Credit: Timothy Kang, Jin-sheng Wu and Jian Jing

Most motor systems are organized into a hierarchy of at least two layers of neurons, with higher-order neurons acting on lower-order neurons, which form a small number of building blocks or modules that produce a variety of behaviors. However, it was not clear how variants of a single motor act are generated in such a hierarchical system.

In the new work, Jian Jing and Klaudiusz Weiss of the Mount Sinai School of Medicine in New York studied the feeding network of Aplysia, which exhibits a biting behavior in response to the presence of food. The researchers showed that within the feeding network, two higher-order neurons that are active during biting behavior employ a combinatorial mechanism to produce variations in one particular movement parameter of the biting behavior. The researchers showed that, tellingly, these higher-order neurons accomplish their roles through their specific actions on two groups of lower-order interneurons that directly influence the particular biting-behavior movement parameter. Therefore, in this system, and likely others, the generation of large numbers of behavioral variants is characterized by higher-order neurons that flexibly combine an "alphabet system" of outputs that are generated by lower-order modules within the brain’s motor network.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>