Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defeating the ’superpests’

07.10.2005


Scientists have developed a new technique that makes pesticides more effective by removing insects’ ability to exhibit resistance. Their research will extend the effective life of current pesticides, significantly reduce the amount that needs to be sprayed and remove the need for farmers to move to stronger and more harmful chemicals.



Researchers at Rothamsted Research in Hertfordshire, working with researchers in New South Wales, Australia have developed a way to counter the pests’ most common way of becoming resistant and in trials it has proved to be almost 100 per cent effective.

Resistance to pesticides is a global problem, which is hitting tropical and developing countries particularly hard. Insect pests often develop resistance by over-producing enzymes that degrade the effectiveness of a pesticide. The Rothamsted scientists, supported by the Biotechnology and Biological Sciences Research Council (BBSRC), have developed a product that blocks the enzymes and then delivers a dose of pesticide 4-5 hours later to kill the newly defenceless insect.


The technique uses piperonyl butoxide (PBO), a chemical derived originally from the sassafras tree and used for many years in laboratories to enhance the effectiveness of other chemicals. The PBO binds to the enzyme that would otherwise break down the pesticide. However, the key with this research has been to work out the correct time delay between applying the PBO inhibitor and spraying the pesticide. The insects’ enzyme function has to be completely debilitated before pesticide is sprayed for the method to be effective.

Dr Graham Moores, research leader at Rothamsted Research, said, "Populations of aphids, cotton bollworm, whitefly, diamondback moth and mosquitoes are all becoming harder to control so we need a way to overcome insects’ increasing resistance to pesticides. Using this approach to defeat the pests’ enzyme processes reduces the amount of pesticide that farmers need to spray on a field. It will also help farmers in developing countries who cannot afford more costly, newer chemicals. In tests on whiteflies in Spain and Australia the enzyme inhibitor combined with a time delayed release of the pesticide proved to be almost 100 per cent effective."

Professor Julia Goodfellow, Chief Executive of BBSRC, said, "This research shows how UK agricultural science can have real benefits for a wide range of people. This research has led to a product that can help both western and developing world farmers to defeat insects that have built up resistance to common pesticides. This will directly help to reduce the pesticide burden on the environment."

The phased-release technology has been developed in partnership with Dr Robin Gunning at New South Wales Department of Primary Industries, Tamworth, Australia and the Italian company Endura SpA.

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>