Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defeating the ’superpests’

07.10.2005


Scientists have developed a new technique that makes pesticides more effective by removing insects’ ability to exhibit resistance. Their research will extend the effective life of current pesticides, significantly reduce the amount that needs to be sprayed and remove the need for farmers to move to stronger and more harmful chemicals.



Researchers at Rothamsted Research in Hertfordshire, working with researchers in New South Wales, Australia have developed a way to counter the pests’ most common way of becoming resistant and in trials it has proved to be almost 100 per cent effective.

Resistance to pesticides is a global problem, which is hitting tropical and developing countries particularly hard. Insect pests often develop resistance by over-producing enzymes that degrade the effectiveness of a pesticide. The Rothamsted scientists, supported by the Biotechnology and Biological Sciences Research Council (BBSRC), have developed a product that blocks the enzymes and then delivers a dose of pesticide 4-5 hours later to kill the newly defenceless insect.


The technique uses piperonyl butoxide (PBO), a chemical derived originally from the sassafras tree and used for many years in laboratories to enhance the effectiveness of other chemicals. The PBO binds to the enzyme that would otherwise break down the pesticide. However, the key with this research has been to work out the correct time delay between applying the PBO inhibitor and spraying the pesticide. The insects’ enzyme function has to be completely debilitated before pesticide is sprayed for the method to be effective.

Dr Graham Moores, research leader at Rothamsted Research, said, "Populations of aphids, cotton bollworm, whitefly, diamondback moth and mosquitoes are all becoming harder to control so we need a way to overcome insects’ increasing resistance to pesticides. Using this approach to defeat the pests’ enzyme processes reduces the amount of pesticide that farmers need to spray on a field. It will also help farmers in developing countries who cannot afford more costly, newer chemicals. In tests on whiteflies in Spain and Australia the enzyme inhibitor combined with a time delayed release of the pesticide proved to be almost 100 per cent effective."

Professor Julia Goodfellow, Chief Executive of BBSRC, said, "This research shows how UK agricultural science can have real benefits for a wide range of people. This research has led to a product that can help both western and developing world farmers to defeat insects that have built up resistance to common pesticides. This will directly help to reduce the pesticide burden on the environment."

The phased-release technology has been developed in partnership with Dr Robin Gunning at New South Wales Department of Primary Industries, Tamworth, Australia and the Italian company Endura SpA.

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>