Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mechanism for DNA replication discovered

30.09.2005


Mount Sinai School of Medicine researchers first to discover that a protein can provide the coding information for DNA replication



Since the discovery of the structure of DNA by James Watson and Francis Crick in 1953, the paradigm for DNA replication has stated that the DNA itself codes for the appropriate pairings for replication. In other words, if a guanine base is on the original strand of DNA then its partner, a cytosine base, will pair to it on the replicated strand. In a study published in this week’s issue of Science, researchers from Mount Sinai School of Medicine report on the first instance in which a protein, rather than the DNA, provides the coding information.

The study offers a specific mechanism by which cells cope with some of the most destructive carcinogens in the environment, including those in cigarette smoke. Many of these carcinogens preferentially damage DNA at guanine – one of the four bases in DNA – blocking, in some cases, the ability of the guanine to partner with cytosine, which can lead to mistakes during replication.


Aneel Aggarwal, PhD, and Deepak Nair, PhD, of the Department of Physiology and Biophysics at Mount Sinai School of Medicine and their colleagues at University of Texas Medical Branch, Galveston discovered that a protein called Rev1 DNA polymerase itself codes for a cytosine to be placed on the replicating strand. The cytosine is inserted based upon the coding information in Rev1 regardless of whether a guanine or another base is present on the DNA.

"This is the first time we have seen a protein serving as a template for DNA synthesis," said Dr. Aggarwal. "This provides an entirely new mechanism by which cells can replicate through DNA damaged by certain carcinogens. It thus opens a novel area of study with the potential for innovative approaches to prevention and treatment of cancer."

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>