Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets to antibody’s success against West Nile Virus surprise scientists

29.09.2005


Insights may advance vaccines for related viruses including dengue fever



A monoclonal antibody that can effectively treat mice infected with West Nile virus has an intriguing secret: Contrary to scientists’ expectations, it does not block the virus’s ability to attach to host cells. Instead, the antibody somehow stops the infectious process at a later point.

"This was a complete surprise to us, but it gives us some very useful insights," says senior author Daved Fremont, Ph.D., associate professor of pathology & immunology and of biochemistry & molecular biophysics at Washington University School of Medicine in St. Louis. "Based on what we’ve learned, we are now developing therapeutic antibodies for related viruses that also are effective at stopping the process of infection after the virus attaches to host cells."


Detailed study of how the antibody physically binds to the virus has provided intriguing clues to how it may block infection. Scientists found evidence suggesting that the antibody prevents the virus from rearranging the protein envelope that surrounds its genetic material after it enters a host cell.

To reproduce, a virus must alter its envelope in order to inject its genetic material inside the cell. After that injection, the virus tricks the host cell into making more copies of the genetic material that can then be assembled into new viral particles or virions and sent out to infect other host cells and reproduce. But with the viral reproduction process blocked by the antibody, scientists suspect that the host cell eventually destroys the virion.

Fremont and colleagues, who publish their results in the Sept. 29 issue of Nature, hope to design a new diagnostic system that can determine whether vaccines for West Nile and related viruses undergoing clinical trials stimulate production of antibodies that stop infections at a similar point.

In 2004, West Nile virus, which is a mosquito-borne flavivirus, reportedly caused 2,470 infections and 88 deaths in the United States. First isolated in Africa in 1937, West Nile spread to the Middle East, Europe, and Asia before arriving in the United States in 1999. Most infections with the virus are mild or symptom-free, but infections in people with weakened immune systems and those over 50 sometimes lead to serious complications or death.

Like West Nile, dengue virus is a flavivirus spread by mosquito bites, but only in tropical regions of the world. The dengue virus is estimated by Centers for Disease Control and Prevention epidemiologists to cause100 million infections annually worldwide.

"Currently there are no effective and safe vaccines for pediatric dengue," says co-author Michael Diamond, M.D., Ph.D., assistant professor of molecular microbiology, of pathology & immunology and of medicine. "Thanks to our data from the West Nile virus antibody, we believe we now have a much better idea of how to evaluate vaccines for dengue."

Fremont and Diamond led a team of researchers at Washington University and Macrogenics Inc., a private company, that announced the identification of the effective West Nile antibody earlier this year. In a line of mice genetically altered to increase vulnerability to the virus, they found injection of the new antibodies could boost survival rates of mice infected with the virus to greater than 90 percent.

Scientists at Macrogenics are working on the preliminary studies required before the West Nile antibody can be tested in humans. Meanwhile, researchers at Washington University wanted to know why the new antibody was so effective.

Antibodies normally work by binding to invaders to flag them for consumption and destruction by immune system cells known as macrophages. In the prior study, which screened several potential West Nile antibodies, scientists found that all the most potent antibodies bound to a particular section of a protein that makes up the exterior of the viral envelope. The envelope of a single viral particle or virion is comprised of 180 copies of this protein.

For the new study, scientists determined the detailed structure of a single antibody bound to its envelope protein target region using the technique of protein crystallography. Scientists were able to affirm in greater detail earlier observations suggesting that the antibody will be therapeutic for all strains of West Nile Virus.

Based on this data, they predicted how multiple copies of the successful antibody would bind to a virion.

"We were startled to find that the antibody only seemed to be able to attach to 120 of the 180 copies of the target region in the complete viral envelope," says Grant Nybakken, a Washington University M.D./Ph.D. student who was lead author of the study.

Further tests showed that virions covered in infection-stopping antibodies could still bind to host cells, while antibodies that were less effective at stopping infection could more effectively prevent the virion from binding to host cells.

How does an antibody that’s better at preventing the virus from binding to host cells actually turn out to be worse at treating infection? The key may lie in a theory known as antibody-dependent enhancement (ADE) of infection, which has been observed in test tube studies of dengue virus and may be important to the onset of dengue hemorrhagic fever.

This theory suggests that dengue and other viruses may have developed tricks that let them reproduce inside macrophages, the immune cells that normally consume and destroy any object that they find covered in antibodies. In effect, these tricks turn antibodies that should be death warrants into passes into cells where invaders can reproduce.

Fremont cautions that this phenomenon has not been seen in West Nile virus, but notes that when he and his colleagues tested the ability of several antibodies to prevent West Nile from reproducing inside macrophages, they found that only the therapeutic antibodies blocked the virus’ reproduction. The therapeutic antibodies’ ability to stop reproduction in macrophages even worked when the virions were simultaneously exposed to antibodies known to enhance infection.

"Do the therapeutic antibodies also prevent the virus from properly injecting its genetic material into macrophages? It’s a tempting possibility, but we don’t have the evidence to prove it yet," he says.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>