Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered molecule amplifies body’s immune response

29.09.2005


By altering a molecule called Stat1, which is involved in cellular immune signaling, scientists have succeeded in making the molecule more responsive and thus more efficient. This old protein with a new twist may eventually be used to improve the body’s defense against infection.



Stat1 is involved in immune responses that are initiated by proteins called interferons. These proteins are produced by the cells of the immune system in response to challenges by foreign agents such as viruses, bacteria, parasites and tumor cells. Recently, interferon has also been shown to play a role in the body’s surveillance against the development of cancer. Because of this role, recombinant interferon is often used for the treatment of certain fibrotic diseases as well as cancers.

Interferon binds to receptors on the surface of the cell, which then use Stat molecules to send signals to the nucleus to increase the expression of genes needed to defend the host against infection. A balance in the amount of Stat signaling caused by interferon is very important.


"When interferon levels are too low, the host is highly susceptible to infection," explains Dr. Michael J. Holtzman of the Washington University School of Medicine in St. Louis, Missouri. "This also applies to Stat1. Children who are born with genetic deficiencies of Stat1 are also very susceptible to infection. In the more severe case, the children die in infancy of fatal viral infections. In less severe cases, they later develop infections due to mycobacteria. When interferon levels are too high, for example during treatment with interferon, there are side effects due to the increased nonspecific response caused by excessive amounts of interferon."

Dr. Holtzman and his colleagues at the Washington University School of Medicine decided to try to improve the body’s defense against infection without causing side effects that occur with interferon treatment by engineering a hyper-responsive Stat1 molecule. By increasing the efficiency of the Stat1 molecule, the host could have the benefits of increased Stat1 signaling even at the low levels of interferon normally present in the body. Their results appear as the "Paper of the Week" in the October 7 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

"Our paper is really quite simple in conceptual terms," says Dr. Holtzman. "It is well known that interferon provides a benefit to people by protecting them against infectious diseases and cancer. Unfortunately, administration of interferon is costly and short-lived and has significant side effects. We simply reasoned that it might be possible to improve the benefits of interferon by enhancing the way it produces its beneficial effects. We therefore improved a molecule, known as Stat1, that is responsible for relaying the benefits of interferon in the body."

Their initial in vitro results were promising, and the engineered Stat1 molecule exhibited an increased responsiveness to interferon. Following up on these discoveries, Dr. Holtzman and his colleagues are currently performing gene transfer experiments, using both recombinant viruses and transgenic mice, to establish the benefits of hyper-responsive Stat1 in vivo for treating viral infection and cancer. They are also screening for drugs that might increase Stat1 responsiveness.

These experiments may eventually lead to many improvements in cancer therapy as well as the treatment of other infections. Basically, any situation in which interferon hyper-responsiveness might be beneficial will profit from Dr. Holtzman’s research.

"One could use our strategy of improving Stat1 efficiency during the winter months in patients who are at risk for developing serious viral infections, for example children with asthma, or heart disease, or immune compromise," suggests Dr. Holtzman. "It may also be of benefit in situations where interferon therapy has been used, such as treatments for liver disease and lung fibrosis, as well as certain cancers. Improving Stat1 efficiency would allow for much lower doses of interferon to be used, decreasing cost and side effect profile. In terms of diagnosis, it may be possible to screen patients for the level of Stat1 responsiveness to interferon, and if found to be low, that would make them candidates for a strategy to improve Stat1 responsiveness using our methods."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>