Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered molecule amplifies body’s immune response

29.09.2005


By altering a molecule called Stat1, which is involved in cellular immune signaling, scientists have succeeded in making the molecule more responsive and thus more efficient. This old protein with a new twist may eventually be used to improve the body’s defense against infection.



Stat1 is involved in immune responses that are initiated by proteins called interferons. These proteins are produced by the cells of the immune system in response to challenges by foreign agents such as viruses, bacteria, parasites and tumor cells. Recently, interferon has also been shown to play a role in the body’s surveillance against the development of cancer. Because of this role, recombinant interferon is often used for the treatment of certain fibrotic diseases as well as cancers.

Interferon binds to receptors on the surface of the cell, which then use Stat molecules to send signals to the nucleus to increase the expression of genes needed to defend the host against infection. A balance in the amount of Stat signaling caused by interferon is very important.


"When interferon levels are too low, the host is highly susceptible to infection," explains Dr. Michael J. Holtzman of the Washington University School of Medicine in St. Louis, Missouri. "This also applies to Stat1. Children who are born with genetic deficiencies of Stat1 are also very susceptible to infection. In the more severe case, the children die in infancy of fatal viral infections. In less severe cases, they later develop infections due to mycobacteria. When interferon levels are too high, for example during treatment with interferon, there are side effects due to the increased nonspecific response caused by excessive amounts of interferon."

Dr. Holtzman and his colleagues at the Washington University School of Medicine decided to try to improve the body’s defense against infection without causing side effects that occur with interferon treatment by engineering a hyper-responsive Stat1 molecule. By increasing the efficiency of the Stat1 molecule, the host could have the benefits of increased Stat1 signaling even at the low levels of interferon normally present in the body. Their results appear as the "Paper of the Week" in the October 7 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

"Our paper is really quite simple in conceptual terms," says Dr. Holtzman. "It is well known that interferon provides a benefit to people by protecting them against infectious diseases and cancer. Unfortunately, administration of interferon is costly and short-lived and has significant side effects. We simply reasoned that it might be possible to improve the benefits of interferon by enhancing the way it produces its beneficial effects. We therefore improved a molecule, known as Stat1, that is responsible for relaying the benefits of interferon in the body."

Their initial in vitro results were promising, and the engineered Stat1 molecule exhibited an increased responsiveness to interferon. Following up on these discoveries, Dr. Holtzman and his colleagues are currently performing gene transfer experiments, using both recombinant viruses and transgenic mice, to establish the benefits of hyper-responsive Stat1 in vivo for treating viral infection and cancer. They are also screening for drugs that might increase Stat1 responsiveness.

These experiments may eventually lead to many improvements in cancer therapy as well as the treatment of other infections. Basically, any situation in which interferon hyper-responsiveness might be beneficial will profit from Dr. Holtzman’s research.

"One could use our strategy of improving Stat1 efficiency during the winter months in patients who are at risk for developing serious viral infections, for example children with asthma, or heart disease, or immune compromise," suggests Dr. Holtzman. "It may also be of benefit in situations where interferon therapy has been used, such as treatments for liver disease and lung fibrosis, as well as certain cancers. Improving Stat1 efficiency would allow for much lower doses of interferon to be used, decreasing cost and side effect profile. In terms of diagnosis, it may be possible to screen patients for the level of Stat1 responsiveness to interferon, and if found to be low, that would make them candidates for a strategy to improve Stat1 responsiveness using our methods."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>