Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover E. coli’s defense mechanism

29.09.2005


Iron key to nitric oxide reduction



Researchers at the Georgia Institute of Technology and the John Innes Centre in the United Kingdom have uncovered a mechanism with which disease-causing bacteria may thwart the body’s natural defense responses. The findings, which could ultimately lead to the development of more effective antibiotics, appear in the September 29, 2005 issue of the journal Nature.

"Nitric oxide is produced by the body to fight infections. We discovered a mechanism that allows bacterial cells to detect nitric oxide and turn it into something that’s harmless to the cell," said Stephen Spiro, associate professor in the School of Biology at Georgia Tech.


Spiro, along with colleagues Benoît D’Autréauz, Nicholas Tucker and Ray Dixon from the John Innes Centre, studied a non-pathogenic strain of Escherichia coli, which is very closely related to Salmonella bacteria.

The pathogenic forms of E. coli and Salmonella are usually transmitted to humans through undercooked meat, unwashed vegetables and cross contamination from surfaces on which these foods were prepared. Infections from either of these organisms can cause diarrhea, abdominal cramps and sometimes more serious illnesses that require hospitalization. E.coli doesn’t respond well to antibiotics, while Salmonella has developed several drug-resistant strains. Learning how the bacteria handle the body’s immune response is the first step in developing more effective medicines.

Spiro and colleagues focused their study on the NorR protein and the role it plays in reducing the levels of nitric oxide. In response to nitric oxide, NorR binds to DNA in order to regulate expression of an enzyme that reduces the amount of nitric oxide in the bacteria. Since nitric oxide binds to metals, the researchers suspected that there might be a metal in the protein.

"It turns out that the protein NorR contains a single molecule of iron," said Spiro. "Our study found that the nitric oxide binds to the iron, which in turn activates the protein."

Once activated, the protein controls expression of the norVW genes. These genes encode an enzyme that removes the nitric oxide, allowing the bacteria to fend off the body’s defenses.

The discovery of this mechanism is just the first step in what Spiro hopes will be a line of research aimed at disrupting the mechanism by which the bacteria rids itself of the poisonous nitric oxide.

"If we can interfere with the mechanism, it could lead to better antibiotics and better treatments," said Spiro.

David Terraso | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Bacterial control mechanism for adjusting to changing conditions: How do bacteria adapt?
13.12.2017 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>