Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers uncover E. coli’s defense mechanism


Iron key to nitric oxide reduction

Researchers at the Georgia Institute of Technology and the John Innes Centre in the United Kingdom have uncovered a mechanism with which disease-causing bacteria may thwart the body’s natural defense responses. The findings, which could ultimately lead to the development of more effective antibiotics, appear in the September 29, 2005 issue of the journal Nature.

"Nitric oxide is produced by the body to fight infections. We discovered a mechanism that allows bacterial cells to detect nitric oxide and turn it into something that’s harmless to the cell," said Stephen Spiro, associate professor in the School of Biology at Georgia Tech.

Spiro, along with colleagues Benoît D’Autréauz, Nicholas Tucker and Ray Dixon from the John Innes Centre, studied a non-pathogenic strain of Escherichia coli, which is very closely related to Salmonella bacteria.

The pathogenic forms of E. coli and Salmonella are usually transmitted to humans through undercooked meat, unwashed vegetables and cross contamination from surfaces on which these foods were prepared. Infections from either of these organisms can cause diarrhea, abdominal cramps and sometimes more serious illnesses that require hospitalization. E.coli doesn’t respond well to antibiotics, while Salmonella has developed several drug-resistant strains. Learning how the bacteria handle the body’s immune response is the first step in developing more effective medicines.

Spiro and colleagues focused their study on the NorR protein and the role it plays in reducing the levels of nitric oxide. In response to nitric oxide, NorR binds to DNA in order to regulate expression of an enzyme that reduces the amount of nitric oxide in the bacteria. Since nitric oxide binds to metals, the researchers suspected that there might be a metal in the protein.

"It turns out that the protein NorR contains a single molecule of iron," said Spiro. "Our study found that the nitric oxide binds to the iron, which in turn activates the protein."

Once activated, the protein controls expression of the norVW genes. These genes encode an enzyme that removes the nitric oxide, allowing the bacteria to fend off the body’s defenses.

The discovery of this mechanism is just the first step in what Spiro hopes will be a line of research aimed at disrupting the mechanism by which the bacteria rids itself of the poisonous nitric oxide.

"If we can interfere with the mechanism, it could lead to better antibiotics and better treatments," said Spiro.

David Terraso | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>