Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover E. coli’s defense mechanism

29.09.2005


Iron key to nitric oxide reduction



Researchers at the Georgia Institute of Technology and the John Innes Centre in the United Kingdom have uncovered a mechanism with which disease-causing bacteria may thwart the body’s natural defense responses. The findings, which could ultimately lead to the development of more effective antibiotics, appear in the September 29, 2005 issue of the journal Nature.

"Nitric oxide is produced by the body to fight infections. We discovered a mechanism that allows bacterial cells to detect nitric oxide and turn it into something that’s harmless to the cell," said Stephen Spiro, associate professor in the School of Biology at Georgia Tech.


Spiro, along with colleagues Benoît D’Autréauz, Nicholas Tucker and Ray Dixon from the John Innes Centre, studied a non-pathogenic strain of Escherichia coli, which is very closely related to Salmonella bacteria.

The pathogenic forms of E. coli and Salmonella are usually transmitted to humans through undercooked meat, unwashed vegetables and cross contamination from surfaces on which these foods were prepared. Infections from either of these organisms can cause diarrhea, abdominal cramps and sometimes more serious illnesses that require hospitalization. E.coli doesn’t respond well to antibiotics, while Salmonella has developed several drug-resistant strains. Learning how the bacteria handle the body’s immune response is the first step in developing more effective medicines.

Spiro and colleagues focused their study on the NorR protein and the role it plays in reducing the levels of nitric oxide. In response to nitric oxide, NorR binds to DNA in order to regulate expression of an enzyme that reduces the amount of nitric oxide in the bacteria. Since nitric oxide binds to metals, the researchers suspected that there might be a metal in the protein.

"It turns out that the protein NorR contains a single molecule of iron," said Spiro. "Our study found that the nitric oxide binds to the iron, which in turn activates the protein."

Once activated, the protein controls expression of the norVW genes. These genes encode an enzyme that removes the nitric oxide, allowing the bacteria to fend off the body’s defenses.

The discovery of this mechanism is just the first step in what Spiro hopes will be a line of research aimed at disrupting the mechanism by which the bacteria rids itself of the poisonous nitric oxide.

"If we can interfere with the mechanism, it could lead to better antibiotics and better treatments," said Spiro.

David Terraso | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>