Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From trigger to toxin - Clostridium botulinum exposed

28.09.2005


A discovery by Institute of Food Research (IFR) scientists is set to improve the food industry’s ability to predict foodborne botulism.


Dormant spore prior to germination and outgrowth



Botulism is a severe and often deadly disease caused by toxin-producing spores of the bacterium Clostridium botulinum. The spores remain harmless until they find a suitable, anaerobic environment in which to germinate. After germination, there is a short “lag time” until rapid cell division begins.

Lead author of the newly published study Dr Sandra Stringer said: “We set out to unravel the various stages within lag time leading to the production of deadly neurotoxin. This is like looking at the time between loading a gun and actually pulling the trigger.”


Spores are the time travellers of the bacterial world. They are produced at times of environmental stress and exist in a state of suspended animation. In the protective pod of a spore coat, they resist temperature extremes and dehydration and can survive for millions of years until conditions are ripe for germination.

A single spore of Clostridium botulinum can lead to neurotoxin production in food. Previous studies have found that the lower the number of spores, the more difficult it is to predict growth patterns. However, prediction of lag time has until now been based on the belief that the first spore to germinate will be the first to produce actively dividing cells and start toxin production.

The IFR study is the first to investigate each stage within lag time and the relationship between them.

“The only way to study each stage in detail is by using microscopy and image analysis”, said Dr Stringer. “We developed a novel imaging system and made microscopic observations of 1,739 spores. We tracked their irreversible progress through germination and rehydration to shedding the spore coat, emerging as a young cell, maturing and finally beginning cell division.

“We found that each stage from germination to growth is variable between individual spores and none of the stages are related. Germination is therefore not a good predictor to use in risk assessment work as it underestimates the time to growth and toxin production”, said Dr Stringer.

Images of individual spores were captured every five minutes for 15 hours then analysed.

“This was painstaking work, but worth it”, said Dr Stringer.

Mathematical biologist Dr Gary Barker says the findings have immediate practical benefits: “This fundamental science can be incorporated into real risk assessments for real products. Food companies can approach us for microbial risk assessments of specific products based on a model we have developed that reflects on the variability of spore lag time.”

Zoe Dunford | alfa
Further information:
http://www.ifr.ac.uk

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>