Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From trigger to toxin - Clostridium botulinum exposed

28.09.2005


A discovery by Institute of Food Research (IFR) scientists is set to improve the food industry’s ability to predict foodborne botulism.


Dormant spore prior to germination and outgrowth



Botulism is a severe and often deadly disease caused by toxin-producing spores of the bacterium Clostridium botulinum. The spores remain harmless until they find a suitable, anaerobic environment in which to germinate. After germination, there is a short “lag time” until rapid cell division begins.

Lead author of the newly published study Dr Sandra Stringer said: “We set out to unravel the various stages within lag time leading to the production of deadly neurotoxin. This is like looking at the time between loading a gun and actually pulling the trigger.”


Spores are the time travellers of the bacterial world. They are produced at times of environmental stress and exist in a state of suspended animation. In the protective pod of a spore coat, they resist temperature extremes and dehydration and can survive for millions of years until conditions are ripe for germination.

A single spore of Clostridium botulinum can lead to neurotoxin production in food. Previous studies have found that the lower the number of spores, the more difficult it is to predict growth patterns. However, prediction of lag time has until now been based on the belief that the first spore to germinate will be the first to produce actively dividing cells and start toxin production.

The IFR study is the first to investigate each stage within lag time and the relationship between them.

“The only way to study each stage in detail is by using microscopy and image analysis”, said Dr Stringer. “We developed a novel imaging system and made microscopic observations of 1,739 spores. We tracked their irreversible progress through germination and rehydration to shedding the spore coat, emerging as a young cell, maturing and finally beginning cell division.

“We found that each stage from germination to growth is variable between individual spores and none of the stages are related. Germination is therefore not a good predictor to use in risk assessment work as it underestimates the time to growth and toxin production”, said Dr Stringer.

Images of individual spores were captured every five minutes for 15 hours then analysed.

“This was painstaking work, but worth it”, said Dr Stringer.

Mathematical biologist Dr Gary Barker says the findings have immediate practical benefits: “This fundamental science can be incorporated into real risk assessments for real products. Food companies can approach us for microbial risk assessments of specific products based on a model we have developed that reflects on the variability of spore lag time.”

Zoe Dunford | alfa
Further information:
http://www.ifr.ac.uk

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>