Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound reveals new link between signaling protein and cell migration

27.09.2005


University of Illinois at Chicago researchers report that a protein that regulates key signaling pathways in cells also plays a role in controlling the active movement or migration of cells. The finding may suggest new pharmaceutical therapies for treating a variety of diseases, including cancer.



The protein, known as Raf Kinase Inhibitor Protein, or RKIP, controls activity of kinases, a type of enzyme that acts as a key component in the biochemical signaling pathways responsible for determining almost all cellular activity. But RKIP’s own activity is inhibited when a small molecule organic compound called locostatin, discovered earlier by UIC researchers, binds to it.

Lead investigator Gabriel Fenteany, assistant professor of chemistry at UIC, reports the finding in the Sept. 26 issue of the journal Chemistry and Biology.


The researchers used an approach sometimes called "forward chemical genetics" whereby they first identified locostatin as an inhibitor of cell migration, then used locostatin itself as a kind of bait to fish out the protein to which it binds. That protein was RKIP.

"We have implicated this protein in controlling cell migration, a role it was not previously known to play," said Fenteany. "It’s a molecular target of locostatin. We found this on the basis of the chemical affinity of locostatin for this protein."

As a regulatory protein, RKIP controls the functions of kinases, thereby governing signaling pathways. When these pathways are not properly controlled, all kinds of diseases can result, including cancer.

Fenteany and his team also confirmed that RKIP is involved in cell migration by using other methods.

"After finding that locostatin targets RKIP, we wanted to verify that RKIP really does control cell migration," Fenteany said. The researchers removed, or knocked down, RKIP in the cell using a method called RNA interference and looked at the effect on cell migration. They did the opposite manipulation as well -- artificially increasing the amount of RKIP in the cell and again looking at the effect on cell migration. In each case, the result was consistent with RKIP having an important, positive role in the control of cell migration.

"The interest in RKIP now is that it is a new and apparently important modulator of cell migration and therefore a possible target in anti-cancer strategies focused on limiting tumor angiogenesis and metastasis," Fenteany said.

More investigation on how exactly RKIP controls cell migration is needed, Fenteany said. UIC researchers are also trying to determine the potential of locostatin as a drug by looking at its effects on different types of cells and tissues.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>