Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temperature regulates circadian clock in zebrafish

27.09.2005


The biological clock controls the circadian rhythms of a wide range of physiological and behavioral processes, from fluctuating hormone levels to sleep–wake cycles and feeding patterns. While it’s well known that circadian clock elements sense and respond to light cycles, much less is known about how daily temperature cycles affect the clock’s timing mechanism in vertebrates. In the open-access journal PLoS Biology, Kajori Lahiri, Nicholas Foulkes, and their colleagues study temperature related responses at the genetic and molecular level in zebrafish. This genetically tractable model organism is especially suited to this task because adults, larvae, and even embryos can tolerate a wide range of core body temperatures (being cold-blooded animals) that can be manipulated simply by changing the water temperature. Temperature variations of as little as 2 ºC (35.6 ºF) can reset the zebrafish clock, Lahiri et al. show, and precise shifts in temperature trigger significant changes in the expression of specific clock genes. More explicitly, clock genes per4, cry2a, cry3, and clock1 showed rhythmic expression under temperature cycles when animals were raised in the dark, and the expression profiles during the high temperature phase matched those seen during a light phase when animals experienced light-dark cycles.



Zebrafish cell lines also proved valuable tools for studying temperature response, showing a similar pattern of clock gene expression during cycles of small temperature changes and continued entrainment of clock gene expression even after the cells were exposed to constant temperature. Acute temperature shifts can also trigger significant changes in clock gene expression (transcript levels of per4 and cry3 dropped after a temperature increase and spiked after a temperature decrease; cry2 showed the opposite response)--changes wrought by temperature-dependent shifts in the behavior of transcriptional regulators, as in the case of per4.

Altogether these results show that temperature can regulate the circadian clock in this vertebrate. If the temperature-induced transcriptional responses described here operate in other temperature-related responses, they may shed light on how temperature affects other biological systems as well, including mammals.

Paul Ocampo | EurekAlert!
Further information:
http://www.plos.org
http://www.plosbiology.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>