Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newfound roadblock to interferon effectiveness against malignant melanoma

22.09.2005


Researchers have uncovered a significant contributing factor to interferon resistance of malignant melanoma cells. The finding represents a step forward in understanding the molecular events that govern the growth of this type of cancer and the changes in gene expression and cellular signaling that underlie resistance to established therapies.



Malignant melanoma is the deadliest form of skin cancer, and if not treated successfully, it can spread to affect the liver, lungs, or brain. Chemotherapy fights the disease with limited efficiency, and the use of interferon has become the most established immunotherapy for advanced-stage melanoma. However, melanoma tumors often develop a resistance to the drug, posing one of the major obstacles in the clinical treatment of this cancer.

Now Professor Manfred Schartl and Dr. Claudia Wellbrock, scientists at the University of Würzburg, believe they have an explanation for how this interferon resistance is acquired. They have found that when a gene called STAT5 is too active in melanoma cells, it can counteract the anti-cancer effect of interferon. Interferon normally impedes the growth of cancer cells, whereas STAT5 is thought to act to promote cellular growth.


The new work, published by Professor Schartl and his colleagues in Current Biology, shows that interferon actually activates STAT5 in melanoma cells but that under normal conditions, this does not interfere with the inhibitory potential of the drug. However, when cancer cells posses too much STAT5 activity to begin with, the further activation of STAT5 function by interferon induces a mechanism that blocks the ability of the drug to effectively inhibit growth.

Confirming this initial finding, the researchers found that when they inhibited STAT5 in interferon-resistant melanoma cells, they were able to restore the effectiveness of interferon. This demonstrates the relevance of STAT5 and its contribution to the behavior of melanoma cells in the late stage of the disease.

The findings explain the frequent failure of interferon therapies and thus further our understanding of melanoma in its late, and most aggressive, stage. In the future, a routine analysis of the STAT5 status in melanoma patients might help to improve and personalize therapies.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.current-biology.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>