Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVa scientists discover new type of nerve cell that could be target for drugs to ease pain

22.09.2005


We all know that if you put your hand over an open flame it’s very painful. What you may not know is that, for some people, just lying under a blanket is painful as well. They have neuropathic pain--annoying, chronic pain that comes from a diseased nerve cell rather than a specific stimulus. Feeling phantom pain in a missing limb is another, more famous, example.



Experts say up to two percent of the U.S. population suffers from neuropathic pain. But this pain generally responds poorly to analgesics and other standard treatment and get worse over time, causing permanent disability in some people. Now there may be new hope for these pain sufferers.

Scientists at the University of Virginia Health System have identified a new type of pain-sensing neuron in rats, which are unusually dense in a subtype of calcium channels called T-type channels. It is possible that these "T-rich cells" could be targets for future therapies to treat neuropathic pain as well as acute onset pain, which can happen after invasive surgery or inflammation.


A UVa anesthesiologist, Dr. Slobodan Todorovic, and his colleagues identified these novel cells and believe that the T-type calcium channels in them may serve as a volume control for pain impulses. "We hope that this new type of neuron will be amenable to new therapies. The next step will be to find a drug to block the action of these calcium channels," Todorovic said.

It was once thought that calcium channels were only important for brain function. But, Todorovic and his team show that the T-type channels are important to the functioning of peripheral nerves, especially when the nerves are injured.

A PhD student in UVa’s neuroscience graduate program, Mike Nelson, discovered these T-rich nerve cells in Todorovic’ lab. "It’s very exciting to make an initial observation like this," Nelson said. "It’s one reason we go to grad school in the first place." There are no drugs now that effectively treat neuropathic pain, Nelson added. "Hopefully, observations like this will lead to new and more efficacious drugs in the future. Our findings are another piece of evidence that these calcium channels are excellent targets for new analgesic development."

Bob Beard | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>