Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR Biochemist Goes to Washington with High-Protein Corn

22.09.2005


Daniel Gallie’s findings propose a useful approach to feed the world’s growing population



Corn with twice its usual content of protein and oil and about half its usual carbohydrate content is what Daniel Gallie, professor of biochemistry, will present at a congressional seminar in Washington, D.C., this week.

Because his research holds promise for efficiently feeding high-protein corn to people and livestock all over the world, Gallie has been invited to speak to an audience of congressional staff in the Longworth House Office Building of the U.S. House of Representatives. His 45-minute presentation is scheduled for 10 a.m., Sept. 23.


The National Coalition for Food and Agricultural Research, a broad-based coalition of agricultural producers, science societies and universities, is sponsoring the seminar.

In the United States, the vast majority of corn – nearly 65 percent – is used to feed animals for meat production. Much of the remainder is exported to other countries for feeding animals or made into corn sweeteners or fuel alcohol. Corn, the most widely produced feed grain in the United States, accounts for more than 90 percent of total value and production of feed grains in the country, with around 80 million acres of land planted with corn.

Gallie’s research on doubling the protein content of corn grain adds significant value to the crop, benefiting corn producers. Moreover, his technology nearly doubles corn oil, the most valuable content of corn grain, and significantly increases the grain’s value. Corn is processed also into other food and industrial products such as starch, sweeteners, beverage and industrial alcohol, and fuel ethanol.

“Nearly 800 million people in the world suffer from protein-energy malnutrition, which is a leading cause of death in children in developing countries, many of which already produce corn as a major cereal crop,” said Gallie. “A significant fraction of the world’s population, particularly in developing countries, has no access to meat as a protein source, and has to rely on plant sources such as grain. The new corn we have developed has two embryos in its kernel, which is what doubles the content of protein and oil and reduces the starch content. It could provide a good source of protein for those that depend on grain as their primary source of nutrients.”

Every corn kernel results from a flower on an ear of corn, Gallie explained. Initially the ear produces a pair of flowers for every kernel. But then one of the sister flowers undergoes abortion, resulting in one flower for each kernel. Gallie’s research group has developed technology that essentially rescues the aborted flower, resulting in two kernels that are fused together. “Despite the fusion, the kernels are not bigger,” Gallie said. “It’s basically the same corn, except that it is protein-rich and starch-poor – something that, if applied to sweet corn, would appeal to a large number of weight-conscious people in this country who are interested in low-carb diets and who normally avoid corn in their diets.”

Gallie and his colleagues published their work last year in The Plant Journal. Though their research focused on feed corn, the technology can easily be applied to sweet corn, a sugar-rich mutant strain of regular corn.

The U.S. Department of Agriculture, the National Science Foundation, and the California Agricultural Experiment Station funded the research.

Media interested in covering the event need to contact Brian Hyps at 301-251-0560, ext. 114, or bhyps@aspb.org.

Details of the study:

Flowers in the corn ear develop in pairs but one from each pair aborts before pollination can occur. Because of the role cytokinin, a plant hormone, plays in preventing organ death, Gallie’s research group introduced a gene that enabled production of cytokinin, thus rescuing the flowers. The kernels produced from pairs of flowers fused into a single normal-sized kernel that contained two embryos and a smaller endosperm, the food storage tissue that provides nutrients to the developing embryo. Because the embryo contains the majority of protein and oil, two embryos in the kernel doubles the protein and oil content in corn grain. The nutritional value of the grain improves also because the size of the endosperm, which contains most of the carbohydrates, is reduced.

Brief biography of Daniel Gallie:

Daniel Gallie received his doctoral degree in 1985 from the University of California, Davis. After completing postdoctoral studies at the John Innes Institute in Norwich, England, and at Stanford University, he joined UCR in 1990. During his career, Gallie has investigated the regulation of protein synthesis, the function of heat stress proteins, the control of cell death in plants, the role of plant hormones such as ethylene and cytokinin during plant growth and development, and the function of vitamin C in a plant’s response to adverse environmental conditions. Results from his group have been published in over 100 papers and patents. He is a member of the American Society of Plant Biologists, a professional society devoted to the advancement of the plant sciences.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>