Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting a key enzyme with gene therapy reversed course of Alzheimer’s disease in mouse models

22.09.2005


Silencing Alzheimer’s: targeting a key enzyme with gene therapy reversed course of disease in mouse models



In mice, that had been genetically engineered to develop Alzheimer’s disease, scientists were able to reverse the rodents’ memory loss by reducing the amount of an enzyme that is crucial for the development of Alzheimer’s disease.

"What we are showing is a proof of principle that stopping the synthesis of a protein that is necessary for the formation of the telltale plaques reverses the progression of the disease, and more importantly, the cognitive function of these mice, which had already been impaired, has now recovered," says Inder Verma, professor in the Laboratory for Genetics at the Salk Institute for Biological Studies.


The findings, which are the result of a close collaboration between researchers at the Salk Institute and scientists at the University of California in San Diego, are reported in an advance on-line publication of Nature Neuroscience.

In the past, gene therapy has been mainly used to deliver normal genes into cells to compensate for defective versions of the gene causing disease. In their study, the researchers used gene therapy to silence a normally functioning gene. Exploiting a mechanism called RNA interference, they were able to turn down the gene that helps produce the characteristic amyloid plaques that are one of the hallmarks of Alzheimer’s disease.

"Within a month of treatment, mice that had already suffered memory deficits could learn and remember how to find their way through a water maze," says co-author Robert Marr, a post-doctoral researcher in Verma’s lab.

"It appears that these mice can come back from a very severe level of disease progression," adds first author Oded Singer, also at the Salk. "This is a very important finding because humans are usually diagnosed when the disease has already progressed relatively far."

But he warns that it is too early to make direct comparisons with the human disease, since mice ordinarily don’t develop the symptoms of the disease unless they are genetically engineered to do so.

Amyloid plaques, which are insoluble protein clumps in the brain, can precede the onset of dementia by many years. These plaques are formed when enzymes cleave the amyloid precursor protein (APP) releasing the toxic beta amyloid fragments that clump together to form the sticky plaques. One of the enzymes doing the cleaving is called beta secretase or BACE1.

And although the production of beta amyloid occurs in all brains, healthy brains are able to clear away excess amounts. Brains of people with Alzheimer’s disease, on the other hand, are unable to control beta amyloid accumulation.

For several years now, drug companies have been trying to find a drug that inhibits BACE1 and thus prevent beta amyloid from building up in brains of people with Alzheimer’s disease. But so far, the goal has remained elusive.

Instead of looking for chemical compounds to inhibit BACE1, Oded Singer, collaborating with the laboratories of Fred H. Gage at the Salk Institute and lead author Eliezer Masliah at UCSD, resorted to small biological molecules, called short interfering RNA, or siRNA, which derail the process of translating genes into proteins. They work like a dimmer switch, reducing the amount of available gene product, in this case the enzyme BACE1.

A modified lentivirus, which has been developed in Verma’s lab, delivered the siRNAs into the brain cells of the transgenic mice that were producing vast amounts of human beta-amyloid and whose brains where littered with plaques.

"When you compare the brains of treated and untreated mice, the difference is striking. Silencing BACE1 reduced the number and size of plaques by two thirds within a month, which is incredibly fast," says Singer.

Co-authors of this work also include Edward Rockenstein and Leslie Crews, both at UCSD.

Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia among the elderly in the United States, affecting 4.5-5 million adults - 10 times more than those affected by Parkinson’s disease. Starting with mild memory problems and ending with severe brain damage, Alzheimer’s usually begins after the age of 60, the risk increasing with age.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>