Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting a key enzyme with gene therapy reversed course of Alzheimer’s disease in mouse models

22.09.2005


Silencing Alzheimer’s: targeting a key enzyme with gene therapy reversed course of disease in mouse models



In mice, that had been genetically engineered to develop Alzheimer’s disease, scientists were able to reverse the rodents’ memory loss by reducing the amount of an enzyme that is crucial for the development of Alzheimer’s disease.

"What we are showing is a proof of principle that stopping the synthesis of a protein that is necessary for the formation of the telltale plaques reverses the progression of the disease, and more importantly, the cognitive function of these mice, which had already been impaired, has now recovered," says Inder Verma, professor in the Laboratory for Genetics at the Salk Institute for Biological Studies.


The findings, which are the result of a close collaboration between researchers at the Salk Institute and scientists at the University of California in San Diego, are reported in an advance on-line publication of Nature Neuroscience.

In the past, gene therapy has been mainly used to deliver normal genes into cells to compensate for defective versions of the gene causing disease. In their study, the researchers used gene therapy to silence a normally functioning gene. Exploiting a mechanism called RNA interference, they were able to turn down the gene that helps produce the characteristic amyloid plaques that are one of the hallmarks of Alzheimer’s disease.

"Within a month of treatment, mice that had already suffered memory deficits could learn and remember how to find their way through a water maze," says co-author Robert Marr, a post-doctoral researcher in Verma’s lab.

"It appears that these mice can come back from a very severe level of disease progression," adds first author Oded Singer, also at the Salk. "This is a very important finding because humans are usually diagnosed when the disease has already progressed relatively far."

But he warns that it is too early to make direct comparisons with the human disease, since mice ordinarily don’t develop the symptoms of the disease unless they are genetically engineered to do so.

Amyloid plaques, which are insoluble protein clumps in the brain, can precede the onset of dementia by many years. These plaques are formed when enzymes cleave the amyloid precursor protein (APP) releasing the toxic beta amyloid fragments that clump together to form the sticky plaques. One of the enzymes doing the cleaving is called beta secretase or BACE1.

And although the production of beta amyloid occurs in all brains, healthy brains are able to clear away excess amounts. Brains of people with Alzheimer’s disease, on the other hand, are unable to control beta amyloid accumulation.

For several years now, drug companies have been trying to find a drug that inhibits BACE1 and thus prevent beta amyloid from building up in brains of people with Alzheimer’s disease. But so far, the goal has remained elusive.

Instead of looking for chemical compounds to inhibit BACE1, Oded Singer, collaborating with the laboratories of Fred H. Gage at the Salk Institute and lead author Eliezer Masliah at UCSD, resorted to small biological molecules, called short interfering RNA, or siRNA, which derail the process of translating genes into proteins. They work like a dimmer switch, reducing the amount of available gene product, in this case the enzyme BACE1.

A modified lentivirus, which has been developed in Verma’s lab, delivered the siRNAs into the brain cells of the transgenic mice that were producing vast amounts of human beta-amyloid and whose brains where littered with plaques.

"When you compare the brains of treated and untreated mice, the difference is striking. Silencing BACE1 reduced the number and size of plaques by two thirds within a month, which is incredibly fast," says Singer.

Co-authors of this work also include Edward Rockenstein and Leslie Crews, both at UCSD.

Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia among the elderly in the United States, affecting 4.5-5 million adults - 10 times more than those affected by Parkinson’s disease. Starting with mild memory problems and ending with severe brain damage, Alzheimer’s usually begins after the age of 60, the risk increasing with age.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>