Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting a key enzyme with gene therapy reversed course of Alzheimer’s disease in mouse models

22.09.2005


Silencing Alzheimer’s: targeting a key enzyme with gene therapy reversed course of disease in mouse models



In mice, that had been genetically engineered to develop Alzheimer’s disease, scientists were able to reverse the rodents’ memory loss by reducing the amount of an enzyme that is crucial for the development of Alzheimer’s disease.

"What we are showing is a proof of principle that stopping the synthesis of a protein that is necessary for the formation of the telltale plaques reverses the progression of the disease, and more importantly, the cognitive function of these mice, which had already been impaired, has now recovered," says Inder Verma, professor in the Laboratory for Genetics at the Salk Institute for Biological Studies.


The findings, which are the result of a close collaboration between researchers at the Salk Institute and scientists at the University of California in San Diego, are reported in an advance on-line publication of Nature Neuroscience.

In the past, gene therapy has been mainly used to deliver normal genes into cells to compensate for defective versions of the gene causing disease. In their study, the researchers used gene therapy to silence a normally functioning gene. Exploiting a mechanism called RNA interference, they were able to turn down the gene that helps produce the characteristic amyloid plaques that are one of the hallmarks of Alzheimer’s disease.

"Within a month of treatment, mice that had already suffered memory deficits could learn and remember how to find their way through a water maze," says co-author Robert Marr, a post-doctoral researcher in Verma’s lab.

"It appears that these mice can come back from a very severe level of disease progression," adds first author Oded Singer, also at the Salk. "This is a very important finding because humans are usually diagnosed when the disease has already progressed relatively far."

But he warns that it is too early to make direct comparisons with the human disease, since mice ordinarily don’t develop the symptoms of the disease unless they are genetically engineered to do so.

Amyloid plaques, which are insoluble protein clumps in the brain, can precede the onset of dementia by many years. These plaques are formed when enzymes cleave the amyloid precursor protein (APP) releasing the toxic beta amyloid fragments that clump together to form the sticky plaques. One of the enzymes doing the cleaving is called beta secretase or BACE1.

And although the production of beta amyloid occurs in all brains, healthy brains are able to clear away excess amounts. Brains of people with Alzheimer’s disease, on the other hand, are unable to control beta amyloid accumulation.

For several years now, drug companies have been trying to find a drug that inhibits BACE1 and thus prevent beta amyloid from building up in brains of people with Alzheimer’s disease. But so far, the goal has remained elusive.

Instead of looking for chemical compounds to inhibit BACE1, Oded Singer, collaborating with the laboratories of Fred H. Gage at the Salk Institute and lead author Eliezer Masliah at UCSD, resorted to small biological molecules, called short interfering RNA, or siRNA, which derail the process of translating genes into proteins. They work like a dimmer switch, reducing the amount of available gene product, in this case the enzyme BACE1.

A modified lentivirus, which has been developed in Verma’s lab, delivered the siRNAs into the brain cells of the transgenic mice that were producing vast amounts of human beta-amyloid and whose brains where littered with plaques.

"When you compare the brains of treated and untreated mice, the difference is striking. Silencing BACE1 reduced the number and size of plaques by two thirds within a month, which is incredibly fast," says Singer.

Co-authors of this work also include Edward Rockenstein and Leslie Crews, both at UCSD.

Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia among the elderly in the United States, affecting 4.5-5 million adults - 10 times more than those affected by Parkinson’s disease. Starting with mild memory problems and ending with severe brain damage, Alzheimer’s usually begins after the age of 60, the risk increasing with age.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>