Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein structure key for AIDS, cell function

20.09.2005


Cornell University researchers have discovered the 3-D crystal structure of a protein, human CD38, which may lead to important discoveries about how cells release calcium -- a mineral used in almost every cellular process. The findings also may offer insights into mechanisms involved in certain diseases, ranging from leukemia to diabetes and HIV-AIDS.


Qun Liu and Quan Hao. Copyright Elsevier Ltd.
This artistic rendering of the molecular structure of human CD38 appears on the cover of this month’s issue of the journal Structure. Copyright © Cornell University



Levels of the protein climb, for reasons unknown, when people fall ill, making human CD38 a marker for these diseases.

As one example, researchers have shown that CD38 interrupts an interaction between the AIDS virus and its point of entry into cells -- a protein receptor called CD4. By looking at CD38’s 3-D structure, the Cornell researchers identified a peptide, an organic compound composed of amino acids, that they believe may play a role in interrupting the interface between CD4 and HIV-AIDS.


The findings, published in the journal Structure (Vol. 13, Sept. 2005), mark a major step toward designing drugs that could inhibit processes related to certain diseases. Knowing the protein’s structure also opens the door to understanding CD38’s many functions related to key biological processes about which researchers know very little.

"For example, the mechanism of how a cell mediates calcium release is largely unknown," said the paper’s senior author, Quan Hao, director of the Macromolecular Diffraction Facility (MacCHESS), the biomedical research arm of the Cornell High Energy Synchrotron Source (CHESS). "So this is a very fundamental question for biologists."

It turns out that CD38 helps produce at least two calcium messenger molecules, each of which then opens channels for the release of calcium from specific stores, or reservoirs, within cell organelles.

High intensity X-rays made it possible to pass photons through a protein crystal to reveal its structure. Cornell’s synchrotron produces beams of X-rays millions of times more intense than conventional X-ray generators allow. The very intense beams were necessary to determine the atomic structure of CD38. The research group, which includes researchers from the University of Minnesota, also developed new calculations that allowed them to extract the protein’s entire structure from the X-ray images.

By revealing CD38’s detailed structure, scientists can now begin to examine how the protein’s form influences its molecular functions.

"People have been struggling with this for a long time, and we have finally solved it," said Hao.

The National Institutes of Health, which supports MacCHESS, also funded this research. The paper’s other lead authors include MacCHESS graduate student Qun Liu and researcher support specialist Irina Kriksunov.

Joe Schwartz | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>