Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prevent prostate cancer with antioxidants? Gene pathway may reveal more clues

16.09.2005


Scientists from Maryland and New Jersey have identified a molecular pathway in mice that makes prostate cells vulnerable to cancer-causing oxygen damage. The pathway, which is also involved in human prostate cancer, may help determine how and whether antioxidants, such as certain vitamins or their products that reverse the damage, can prevent prostate cancer.



The researchers, from Johns Hopkins Kimmel Cancer Center and The Cancer Institute of New Jersey, found that when the tumor suppressor gene Nkx3.1 malfunctions, prostate cells lose the ability to protect themselves from oxygen damage. Results of the new studies are in the August issue of the journal Cancer Research.

"Normally, cells with functioning Nkx3.1 seem to process oxidative free radicals appropriately," says Theodore L. DeWeese, M.D., a co-author of the study and director of the Department of Radiation Oncology & Molecular Radiation Sciences at Hopkins. "But cells with faulty Nkx3.1 genes cannot manage oxidative injury. Then, their DNA gets damaged, and that leads to other mutations that in turn can bring about cancer."


The researchers specifically found that a key role of Nkx3.1 is to prevent oxidative damage by regulating the expression of other genes. Oxygen causes cellular degeneration through so-called oxidative free radicals --- highly reactive atoms with an unpaired electron that can rip through cells like a bullet. Free radicals are produced as a result of normal body metabolism, and are widely known to be intimately involved in aging, as well as cancer development.

"Our findings provide new insights regarding the relationship between loss of protection against oxidative stress and the initiation of prostate cancer," adds Cory Abate-Shen, Ph.D., senior study author and professor of medicine and neuroscience, member at the Center for Biotechnology and Medicine at UMDNJ-Robert Wood Johnson Medical School. "One key finding is that defects in the oxidative response pathway occur early in prostate cancer development." Abate-Shen also is co-director of the Prostate Cancer Program at the Cancer Institute of New Jersey.

For the study, the researchers used a sophisticated computer technique called gene expression profiling to compare in-depth the genetic makeup of mice whose Nkx3.1 gene was disrupted with that of normal mice. The method takes all DNA from the cells and allows scientists to look for aberrations. DeWeese likens it to studying thousands of pages of an encyclopedia simultaneously; trying to identify what pages may have been altered.

They observed that mice with malfunctioning Nkx3.1 incorrectly expressed 638 genes, including those that created a significant reduction in some antioxidant enzymes vital to oxidative damage prevention. These alterations occurred in mice as early as four months of age - well before cellular changes are visible in the mouse prostate. The mutant mice also displayed a fivefold increase in the amount of cancer-related DNA damage, called 8-hydroxy-2’-deoxyguanosine.

Further investigation showed that the progression to prostate cancer as it occurs in mice lacking Nkx3.1 and another tumor suppressor, Pten, correlated with additional deregulation of antioxidants and more profound accumulations of oxidative damage to DNA and protein.

"Mice with defective Nkx3.1 provide a valuable tool for preclinical studies to test whether antioxidants might be useful for prostate cancer prevention," Abate-Shen says and continuing studies will test antioxidants or other agents on the altered mice.

Prostate cancer is the most commonly diagnosed cancer in men and ranks second to lung cancer as the leading cause of cancer death among American men. More than 232,000 cases of prostate cancer are diagnosed and treated annually in the United States, and close to 30,000 men die each year of the disease. Most men over the age of 50 will have some experience with prostate disease -- with either an enlarged prostate or cancer.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>