Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIAI scientists discover cellular switch for controlling immune system function

12.09.2005


Research could lead to future treatment advancements for rheumatoid arthritis and other autoimmune diseases



A major finding by researchers at the La Jolla Institute for Allergy & Immunology (LIAI) has identified a previously unknown cellular mechanism that acts as an off switch for immune system function. The discovery could lead to the future development of new treatments for autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and Crohn’s disease.

In autoimmune diseases, the immune system, which normally wards off invading viruses and bacteria, instead mistakenly attacks normal body tissues, leading to illness. "By understanding this cellular process for turning off immune system activity, we are hopeful this will lead to new treatments that will stop unwanted immune responses, such as those which occur in autoimmune diseases," said LIAI scientist Carl Ware, Ph.D., who co-led the study with LIAI researcher Chris Benedict, Ph.D. The research team also involved scientists from Rush Medical Center and Northwestern University in Chicago and Washington University in St. Louis.


The findings will be published September 13 in the Proceedings of the National Academy of Sciences (PNAS) in a paper entitled, "Evolutionarily Divergent Herpesviruses Modulate T cell activation by Targeting the Herpesvirus Entry Mediator (HVEM) Cosignaling Pathway."

Jennifer Gommerman, Ph.D., and Tania Watts, Ph.D., of the University of Toronto’s Department of Immunology, who co-wrote a PNAS commentary on the paper scheduled for online publication this week, called the findings a significant advancement. "This discovery underscores the importance of this pathway in immune regulation and advances our knowledge of how to develop effective treatments for certain illnesses."

In the study, the team of scientists looked at two members of the herpes family of viruses, cytomegalovirus and herpes simplex virus, because of their ability to lay dormant in the immune system without causing disease. "These viruses teach us how to manipulate the immune system," Dr. Ware said. "We found that these two very different viruses were attacking the same communication pathway in the immune system." By disrupting that pathway, the viruses were keeping T lymphocytes - which are white blood cells that fight disease - from communicating with other cells in the immune system. "It’s kind of like jamming a phone system," Dr. Ware explained. "If communication gets cut off, messages won’t get through and nothing is going to get done."

Central in the viruses’ ability to manipulate immune system communication was a cellular protein called the Herpesvirus Entry Mediator (HVEM), which the scientists found effectively worked as an "off and on switch" for immune responses. Several cellular proteins -- members of the tumor necrosis factor (TNF) family -- interact with HVEM to enable this immune system communication switch. HVEM is part of a larger TNF family of molecules involved in a wide variety of important immune system functions. The finding is the latest from Dr. Ware’s laboratory involving TNF receptors, which he has been studying for more than 20 years. Drugs targeted at the TNF family are prominent treatments against some autoimmune diseases, including rheumatoid arthritis, psoriasis and Crohn’s disease.

Mitchell Kronenberg, Ph.D., LIAI President and Scientific Director, said the team’s findings are regarded as very exciting by the scientific community. "This research could one day lead to the development of drugs that mimic the action of HVEM," he said. "That could give medical science a new method for reducing or even stopping the inflammation associated with rheumatoid arthritis and other autoimmune diseases."

The findings also have implications beyond autoimmune disease, including possible application in treatments for infectious diseases and cancer. "An important part of our findings is that HVEM can not only switch off immune system response but it can also switch it on," Dr. Ware said. "This may be valuable in fighting infectious disease, where the body needs a stronger immune response. It also could aid in prompting immune cells to attack cancerous cells."

In addition to Ware and Benedict, other researchers participating in the study from the La Jolla Institute for Allergy & Immunology were Timothy Cheung, Ian Humphreys, Karen Potter, Paula Norris, Heather Shumway, Bonnie Tran, Ginelle Patterson, Rochelle Jean-Jacques and Miri Yoon. In Chicago, researchers participating were Patricia Spear from Northwestern University and Nell Lurain from Rush Medical Center, and in St. Louis, Kenneth Murphy from Washington University. The research was supported in part by grants from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>