Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIAI scientists discover cellular switch for controlling immune system function

12.09.2005


Research could lead to future treatment advancements for rheumatoid arthritis and other autoimmune diseases



A major finding by researchers at the La Jolla Institute for Allergy & Immunology (LIAI) has identified a previously unknown cellular mechanism that acts as an off switch for immune system function. The discovery could lead to the future development of new treatments for autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and Crohn’s disease.

In autoimmune diseases, the immune system, which normally wards off invading viruses and bacteria, instead mistakenly attacks normal body tissues, leading to illness. "By understanding this cellular process for turning off immune system activity, we are hopeful this will lead to new treatments that will stop unwanted immune responses, such as those which occur in autoimmune diseases," said LIAI scientist Carl Ware, Ph.D., who co-led the study with LIAI researcher Chris Benedict, Ph.D. The research team also involved scientists from Rush Medical Center and Northwestern University in Chicago and Washington University in St. Louis.


The findings will be published September 13 in the Proceedings of the National Academy of Sciences (PNAS) in a paper entitled, "Evolutionarily Divergent Herpesviruses Modulate T cell activation by Targeting the Herpesvirus Entry Mediator (HVEM) Cosignaling Pathway."

Jennifer Gommerman, Ph.D., and Tania Watts, Ph.D., of the University of Toronto’s Department of Immunology, who co-wrote a PNAS commentary on the paper scheduled for online publication this week, called the findings a significant advancement. "This discovery underscores the importance of this pathway in immune regulation and advances our knowledge of how to develop effective treatments for certain illnesses."

In the study, the team of scientists looked at two members of the herpes family of viruses, cytomegalovirus and herpes simplex virus, because of their ability to lay dormant in the immune system without causing disease. "These viruses teach us how to manipulate the immune system," Dr. Ware said. "We found that these two very different viruses were attacking the same communication pathway in the immune system." By disrupting that pathway, the viruses were keeping T lymphocytes - which are white blood cells that fight disease - from communicating with other cells in the immune system. "It’s kind of like jamming a phone system," Dr. Ware explained. "If communication gets cut off, messages won’t get through and nothing is going to get done."

Central in the viruses’ ability to manipulate immune system communication was a cellular protein called the Herpesvirus Entry Mediator (HVEM), which the scientists found effectively worked as an "off and on switch" for immune responses. Several cellular proteins -- members of the tumor necrosis factor (TNF) family -- interact with HVEM to enable this immune system communication switch. HVEM is part of a larger TNF family of molecules involved in a wide variety of important immune system functions. The finding is the latest from Dr. Ware’s laboratory involving TNF receptors, which he has been studying for more than 20 years. Drugs targeted at the TNF family are prominent treatments against some autoimmune diseases, including rheumatoid arthritis, psoriasis and Crohn’s disease.

Mitchell Kronenberg, Ph.D., LIAI President and Scientific Director, said the team’s findings are regarded as very exciting by the scientific community. "This research could one day lead to the development of drugs that mimic the action of HVEM," he said. "That could give medical science a new method for reducing or even stopping the inflammation associated with rheumatoid arthritis and other autoimmune diseases."

The findings also have implications beyond autoimmune disease, including possible application in treatments for infectious diseases and cancer. "An important part of our findings is that HVEM can not only switch off immune system response but it can also switch it on," Dr. Ware said. "This may be valuable in fighting infectious disease, where the body needs a stronger immune response. It also could aid in prompting immune cells to attack cancerous cells."

In addition to Ware and Benedict, other researchers participating in the study from the La Jolla Institute for Allergy & Immunology were Timothy Cheung, Ian Humphreys, Karen Potter, Paula Norris, Heather Shumway, Bonnie Tran, Ginelle Patterson, Rochelle Jean-Jacques and Miri Yoon. In Chicago, researchers participating were Patricia Spear from Northwestern University and Nell Lurain from Rush Medical Center, and in St. Louis, Kenneth Murphy from Washington University. The research was supported in part by grants from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>