Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A ’translation factor’ protein over-expressed in breast cancer cells might be an oncoprotein

12.09.2005


The tissue-specific elongation factor eEF1A2 might be an oncoprotein involved in breast cancer. Research published in the open access journal BMC Cancer shows that eEF1A2, which is usually present only in muscle cells and neurons, is abnormally expressed in two thirds of breast tumours. This means it could be used as a new diagnostic marker and, once its role as been identified, as a therapeutic target for the treatment of breast tumours.



Catherine Abbott, Victoria Tomlinson and colleagues, from the University of Edinburgh in the UK, studied the expression of eEF1A2 in breast tumour cells both at the RNA and at the protein level. The results from both analyses show that eEF1A2 is moderately to highly expressed in two-thirds of malignant tumour cells, whereas the protein is only barely expressed in normal breast cells; the expression of eEF1A2 is up to 30-fold higher in tumour cells than in normal cells. Over-expression is considerably more significant in tumour cells bearing the estrogen receptor (ER) than in ER-negative tumour cells: 18% of ER-negative tumours showed slight expression of eEF1A2, whereas 63% of ER-positive tumours showed significant expression of the protein.

Recent studies had shown that eEF1A2 is over-expressed in ovarian cancer cells, but the protein had not been shown to be expressed in breast cancer cells. More research is needed to identify its exact role in the development of breast tumours. "The oncogenicity of eEF1A2 may be related to its role in protein synthesis or to its potential non-canonical functions in cytoskeletal remodelling or apoptosis", write the authors.

Juliette Savin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>