Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers zero in on estrogen’s role in breast-cancer cell growth

12.09.2005


Why do estrogen-dependent breast-cancer cells grow and spread rapidly? Researchers at the University of Illinois at Urbana-Champaign say it may be because estrogen virtually eliminates levels of a vitally important regulatory protein.



In a paper that will appear in the Sept. 13 issue of the Proceedings of the National Academy of Sciences, the scientists report that human breast-cancer cells exposed to estrogen in their laboratory showed a dramatic reduction in numbers of a crucial nuclear receptor corepressor, a protein known as N-CoR (pronounced "en CORE"). They also found that the anti-estrogen drug tamoxifen, often used in breast-cancer treatments, encouraged N-CoR recovery, a beneficial activity. The paper was published online last week.

"Because estrogen has the ability to reduce the levels of N-CoR, estrogen then can promote the proliferation and progression of breast cancer, because the balance of co-activators and co-repressors involved in normal gene transcription is altered," said Benita S. Katzenellenbogen, a Swanlund Professor of Cell and Developmental Biology at Illinois. She also is a professor of molecular and integrative physiology.


The findings may have sweeping implications, said Katzenellenbogen and lead author Jonna Frasor, a postdoctoral researcher who joins the faculty of the department of physiology and biophysics in the U. of I. College of Medicine at Chicago this month.

For one, the mechanisms at play could explain at least some of the mixed results seen in women using estrogen and progesterone in hormone therapy, said Katzenellenbogen, who also is a professor in the U. of I. College of Medicine at Urbana-Champaign.

While numbers of N-CoR proteins fell to 20 percent of normal, the level of N-CoR’s messenger RNA went untouched. The reduction of N-CoR followed an up regulation of the ubiquitin ligase Siah2, an enzyme that targets certain proteins for degradation, Frasor said.

"Here we had an effect on the level of the N-CoR protein without affecting the level of N-CoR mRNA," Katzenellenbogen said. "This is the result of the initial effect of estrogen on gene expression, which was to up regulate the mRNA levels for a ubiquitin ligase. So by changing the level of this ligase, it had a dramatic effect on the level of N-CoR protein without affecting gene expression for N-CoR itself."

This "secondary effect" may have broad implications for other important cellular activities, the researchers theorize. Reductions in N-CoR over time also could promote cancer development in other sites, such as the uterus, and could adversely affect the desired activities of vitamin D, retinoid and thyroid receptors, Katzenellenbogen said.

The study sheds light on the impact of estrogen on certain cells, as well as how tamoxifen works as an anti-estrogen to facilitate recovery of N-CoR, she and Frasor said.

"Eventually," Katzenellenbogen said, "understanding more of the mechanisms involved could lead to the development of other related agents that might reduce some of the unwanted side effects of tamoxifen, such as stimulation of the uterus."

In addition to Katzenellenbogen and Frasor, Jeanne M. Danes, a researcher in the department of molecular and integrative physiology, and doctoral student Cory C. Funk were co-authors of the study.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>