Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers zero in on estrogen’s role in breast-cancer cell growth

12.09.2005


Why do estrogen-dependent breast-cancer cells grow and spread rapidly? Researchers at the University of Illinois at Urbana-Champaign say it may be because estrogen virtually eliminates levels of a vitally important regulatory protein.



In a paper that will appear in the Sept. 13 issue of the Proceedings of the National Academy of Sciences, the scientists report that human breast-cancer cells exposed to estrogen in their laboratory showed a dramatic reduction in numbers of a crucial nuclear receptor corepressor, a protein known as N-CoR (pronounced "en CORE"). They also found that the anti-estrogen drug tamoxifen, often used in breast-cancer treatments, encouraged N-CoR recovery, a beneficial activity. The paper was published online last week.

"Because estrogen has the ability to reduce the levels of N-CoR, estrogen then can promote the proliferation and progression of breast cancer, because the balance of co-activators and co-repressors involved in normal gene transcription is altered," said Benita S. Katzenellenbogen, a Swanlund Professor of Cell and Developmental Biology at Illinois. She also is a professor of molecular and integrative physiology.


The findings may have sweeping implications, said Katzenellenbogen and lead author Jonna Frasor, a postdoctoral researcher who joins the faculty of the department of physiology and biophysics in the U. of I. College of Medicine at Chicago this month.

For one, the mechanisms at play could explain at least some of the mixed results seen in women using estrogen and progesterone in hormone therapy, said Katzenellenbogen, who also is a professor in the U. of I. College of Medicine at Urbana-Champaign.

While numbers of N-CoR proteins fell to 20 percent of normal, the level of N-CoR’s messenger RNA went untouched. The reduction of N-CoR followed an up regulation of the ubiquitin ligase Siah2, an enzyme that targets certain proteins for degradation, Frasor said.

"Here we had an effect on the level of the N-CoR protein without affecting the level of N-CoR mRNA," Katzenellenbogen said. "This is the result of the initial effect of estrogen on gene expression, which was to up regulate the mRNA levels for a ubiquitin ligase. So by changing the level of this ligase, it had a dramatic effect on the level of N-CoR protein without affecting gene expression for N-CoR itself."

This "secondary effect" may have broad implications for other important cellular activities, the researchers theorize. Reductions in N-CoR over time also could promote cancer development in other sites, such as the uterus, and could adversely affect the desired activities of vitamin D, retinoid and thyroid receptors, Katzenellenbogen said.

The study sheds light on the impact of estrogen on certain cells, as well as how tamoxifen works as an anti-estrogen to facilitate recovery of N-CoR, she and Frasor said.

"Eventually," Katzenellenbogen said, "understanding more of the mechanisms involved could lead to the development of other related agents that might reduce some of the unwanted side effects of tamoxifen, such as stimulation of the uterus."

In addition to Katzenellenbogen and Frasor, Jeanne M. Danes, a researcher in the department of molecular and integrative physiology, and doctoral student Cory C. Funk were co-authors of the study.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>