Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano shuttles suggest lifting things may become thing of the past

07.09.2005


A key technological breakthrough led by the University of Edinburgh suggests that a futuristic world where people can move objects about ‘remotely’ with laser pointers could be closer than we think. Chemists working on the nanoscale (80,000 times smaller than a hair’s breadth) have managed to move a tiny droplet of liquid across a surface – and even up a slope – by transporting it along a layer of light-sensitive molecules.

Scientists at Edinburgh, Groningen and Bologna are the first to manipulate tiny nanoscale machines (two millionths of a millimetre high) so that they can move an object that is visible to the naked eye. The team has shifted microlitre drops of diiodomethane not just across a flat surface, but also up a one millimetre, 12 degree slope against the force of gravity. It may be the tiniest of movements, but, in the emerging discipline of nanotechnology, it represents a giant technological leap forward.

Although many scientists are working with so-called ‘molecular machines’ – a process which involves making the parts of molecules move in a controlled fashion – the Edinburgh-led team is the first to make these machines interact with ‘real world’ objects. Until now, molecular machines have operated in isolation within the laboratory, but this latest piece of research brings them into contact with the everyday world around us.



The research team has developed a Teflon-like surface that is covered with synthetic molecular ‘shuttles’, the components of which move up and down by a millionth of a millimetre when exposed to light. The movement of droplets results from the change in surface properties after most of the shuttle molecules change position. The phenomenon is so efficient that it generates enough energy to move the droplet. In terms of scale, the process is mind-boggling: it is the equivalent of a conventional mechanical machine using a millimetre displacement of pistons to lift an object twice the height of the world’s tallest building.

More …

Molecular machines are ubiquitous throughout biology (they make muscles move, for example), but making tiny artificial machines is not easy because the physics that govern how things behave at the molecular level is very different from conventional physics. That means the prospect of large objects being moved around remotely by lasers is still some way off, but this new study, reported in the current issue of Nature Materials journal, may prove useful for some ‘lab-on-a-chip’ diagnostic techniques, or for performing chemical reactions on a tiny scale without test tubes.

Principal researcher David Leigh, Forbes Professor of Organic Chemistry at the University of Edinburgh, said: “Nature uses molecular machines in virtually every biological process and, when we learn how to build and control such structures, we will surely find they have the potential to revolutionise molecular-based technologies, from health care to ‘smart’ materials. Molecular machines could be used to make artificial muscles, surfaces that change their properties in response to electricity or light or even – one day in the future – to move objects about a room using a laser pointer. These are not the self-replicating ‘grey goo’ nanorobots of science fiction, but rather the life enhancing technologies of tomorrow.”

Ronald Kerr | alfa
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>