Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano shuttles suggest lifting things may become thing of the past

07.09.2005


A key technological breakthrough led by the University of Edinburgh suggests that a futuristic world where people can move objects about ‘remotely’ with laser pointers could be closer than we think. Chemists working on the nanoscale (80,000 times smaller than a hair’s breadth) have managed to move a tiny droplet of liquid across a surface – and even up a slope – by transporting it along a layer of light-sensitive molecules.

Scientists at Edinburgh, Groningen and Bologna are the first to manipulate tiny nanoscale machines (two millionths of a millimetre high) so that they can move an object that is visible to the naked eye. The team has shifted microlitre drops of diiodomethane not just across a flat surface, but also up a one millimetre, 12 degree slope against the force of gravity. It may be the tiniest of movements, but, in the emerging discipline of nanotechnology, it represents a giant technological leap forward.

Although many scientists are working with so-called ‘molecular machines’ – a process which involves making the parts of molecules move in a controlled fashion – the Edinburgh-led team is the first to make these machines interact with ‘real world’ objects. Until now, molecular machines have operated in isolation within the laboratory, but this latest piece of research brings them into contact with the everyday world around us.



The research team has developed a Teflon-like surface that is covered with synthetic molecular ‘shuttles’, the components of which move up and down by a millionth of a millimetre when exposed to light. The movement of droplets results from the change in surface properties after most of the shuttle molecules change position. The phenomenon is so efficient that it generates enough energy to move the droplet. In terms of scale, the process is mind-boggling: it is the equivalent of a conventional mechanical machine using a millimetre displacement of pistons to lift an object twice the height of the world’s tallest building.

More …

Molecular machines are ubiquitous throughout biology (they make muscles move, for example), but making tiny artificial machines is not easy because the physics that govern how things behave at the molecular level is very different from conventional physics. That means the prospect of large objects being moved around remotely by lasers is still some way off, but this new study, reported in the current issue of Nature Materials journal, may prove useful for some ‘lab-on-a-chip’ diagnostic techniques, or for performing chemical reactions on a tiny scale without test tubes.

Principal researcher David Leigh, Forbes Professor of Organic Chemistry at the University of Edinburgh, said: “Nature uses molecular machines in virtually every biological process and, when we learn how to build and control such structures, we will surely find they have the potential to revolutionise molecular-based technologies, from health care to ‘smart’ materials. Molecular machines could be used to make artificial muscles, surfaces that change their properties in response to electricity or light or even – one day in the future – to move objects about a room using a laser pointer. These are not the self-replicating ‘grey goo’ nanorobots of science fiction, but rather the life enhancing technologies of tomorrow.”

Ronald Kerr | alfa
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>