Tumor cells can weaken immune response

Tumor cells can grow without control by weakening specific cells of the immune system, the T-cells, which normally detect and destroy tumor cells. The findings of Dr. Gerald Willimsky and Prof. Thomas Blankenstein (Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch and Charité) were generated in transgenic mice over a period of seven years and have now been published in the scientific journal Nature* (doi:10.1038/nature03954). Until now, the notion was that tumor cells escape recognition and subsequent destruction by T-cells by hiding.

Furthermore, Dr. Willimsky and Prof. Blankenstein could show that the immune system recognizes tumors derived from single cells and strongly reacts, for example by the increase in T-cells. However, these T-cells do not function. The findings of the two immunologists refer to sporadic tumors which develop without influence from the outside. T-cells on the other hand can control cancers caused by viral infection (e.g., B cell lymphomas triggered by Epstein Barr viruses). Even though tumor cells weaken the immune system, the two researchers are convinced that there is still hope for an immune therapy because tumor cells do not lose their structures which are targets for immune cells, making them still vulnerable for detection and destruction.

Media Contact

Barbara Bachtler alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors