Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State researchers study insects’ immune system

02.09.2005


How insects avoid getting diseases they can carry and spread to humans is the focus of research at Kansas State University.



Mike Kanost, university distinguished professor of biochemistry and head of the department of biochemistry, and researchers in his lab are studying how insects protect themselves against infection. They think the answer lies in insects’ blood, specifically proteins.

The researchers have made progress in understanding which molecules are present in the blood and their functions. The group also has identified proteins involved in the immune response that cause melanin - a coating of black pigment - to be synthesized and deposited on the surface of the pathogen.


The goal of their research is to understand how insects recognize infection caused by microorganisms such as viruses, bacteria and fungi, and the pathway of reactions that follow in the immune system.

Studying the immune system of insects is important because it can lead to useful knowledge for the improvement of biological pesticides, Kanost said. Such a method of pest control only kills specific insects and is safe for humans.

A recent development for Kanost’s group is the transition from studying caterpillars to studying mosquitoes, which have a more direct impact on humans. Understanding how proteins in mosquitoes’ blood function in immune responses may help identify ways to disrupt disease transmission by blood-feeding insects. Knowledge gained from examining caterpillars is being used to understand the mosquito’s immune system, Kanost said.

For a mosquito to bite one human, acquire a disease and then transfer it to the next person it bites poses an interesting concept for researchers. For the disease to spread, it has to survive for a certain period of time in the mosquito. The question is, how does the pathogen survive?

For a disease like malaria, the parasite has to live in an insect’s blood for part of its life cycle, all the while exposed to the mosquito’s immune system. A successful parasite has to avoid the immune system or be able to defend against it. Understanding how a pathogen can survive might result in ways to disrupt the transmission of diseases, Kanost said.

"Insects are the most abundant kind of animal," he said. "They’re very successful animals. If you want to understand biology, understanding insects is important.

"We’re at a point now where we understand at least some of what the immune responses are but how they are regulated is a big question we need to study," Kanost said. "To me, one of the aspects that’s interesting is even if we understand the immune system of one species of insect very well, there are millions of species of insects and they’re all different from each other. Even though they will have some things in common, there’s a lot to do for many lifetimes for people doing research on biochemistry in insects."

Researchers involved with the study include Maureen Gorman, research assistant professor in biochemistry, and Chansak Suwanchaichinda and Shufei Zhuang, both postdoctoral biochemistry research associates.

K-State students taking part in the research are Ana Fraire, junior in biochemistry and pre-medicine, Liberal; and Craig Doan, sophomore in biochemistry, Rose Ochieng, senior in biochemistry and pre-medicine, and Emily Ragan, graduate student in biochemistry, all of Manhattan.

Mike Kanost | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Family tree for orchids explains their astonishing variability
04.09.2015 | University of Wisconsin-Madison

nachricht Gone with the wind: A new project focusses on atmospheric input of phosphorus into the Baltic Sea
04.09.2015 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hubble survey unlocks clues to star birth in neighboring galaxy

In a survey of NASA's Hubble Space Telescope images of 2,753 young, blue star clusters in the neighboring Andromeda galaxy (M31), astronomers have found that M31 and our own galaxy have a similar percentage of newborn stars based on mass.

By nailing down what percentage of stars have a particular mass within a cluster, or the Initial Mass Function (IMF), scientists can better interpret the light...

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Ion implanted, co-annealed, screen-printed 21% efficient n-PERT solar cells with a bifaciality >97%

04.09.2015 | Power and Electrical Engineering

Casting of SiSiC: new perspectives for chemical and plant engineering

04.09.2015 | Machine Engineering

Extremely thin ceramic components made possible by extrusion

04.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>