Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The second DNA string is also important

02.09.2005


The FANTOM Consortium for Genome Exploration Research Group and Karolinska Institutet announce the publication of “Antisense Transcription in the Mammalian Genome” in Science, September 2nd 2005.



It has been known for over half a century that our genetic material occurs as a double strand of DNA molecules. Only one of these strands – the so-called sense strand - encodes for proteins, the building blocks of our cells that in turn make up our bodies. Then what about the other DNA strand – the antisense strand - can it also exert functions? The answer is yes, it can produce so-called antisense genes that are read in our cells in the opposite direction of the real – sense - genes. This phenomenon has previously been regarded as rare, but scientists now show that it is actually the rule rather than the exception. More importantly, these antisense genes are now shown to be extensively used to modulate the expression of the conventional - sense – genes in our cells. Antisense genes are therefore likely to participate in the control of many, perhaps all, cell and body function.

These findings are also of interest because synthetic – man made - antisense molecules have been widely used to inhibit conventional genes, including applications as anti-viral and anti-cancer drugs, which are currently on the market or in clinical trials. It can now be argued that this same principle already has been used by nature on a massive scale.


Many of the described antisense genes are also unusual because they do not encode for proteins and therefore do not fit into the classical definition of a gene. This concept of non-protein-coding RNA is supported by the data in an accompanying report entitled “The Transcriptional Landscape of the Mammalian Genome” by the FANTOM Consortium in the same issue of Science. Since mammals, like humans and mice only have slightly more conventional genes (around 22,000) than a simple worm, the results clearly indicate that while proteins comprise the essential components of our cells, the development of multicellular organisms like mammals is controlled by vast amounts of regulatory noncoding RNAs that until recently were not suspected to exist or be relevant to our biology. Moreover, since most proteins are similar among mammals it also suggests that many of the differences between species may be embedded in the differences in the RNA regulatory control systems, which are evolving much faster than the protein components.

If correct, these findings will radically alter our understanding of genetics and how information is stored in our genome, and how this information is transacted to control the incredibly complex process of mammalian development, with implications for the future of biological research, medicine and biotechnology.

Both of these publications are part of a long-standing international effort and represent an enormous body of work.

Sabina Bossi | alfa
Further information:
http://info.ki.se/article_en.html?ID=4323

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>