Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The second DNA string is also important

02.09.2005


The FANTOM Consortium for Genome Exploration Research Group and Karolinska Institutet announce the publication of “Antisense Transcription in the Mammalian Genome” in Science, September 2nd 2005.



It has been known for over half a century that our genetic material occurs as a double strand of DNA molecules. Only one of these strands – the so-called sense strand - encodes for proteins, the building blocks of our cells that in turn make up our bodies. Then what about the other DNA strand – the antisense strand - can it also exert functions? The answer is yes, it can produce so-called antisense genes that are read in our cells in the opposite direction of the real – sense - genes. This phenomenon has previously been regarded as rare, but scientists now show that it is actually the rule rather than the exception. More importantly, these antisense genes are now shown to be extensively used to modulate the expression of the conventional - sense – genes in our cells. Antisense genes are therefore likely to participate in the control of many, perhaps all, cell and body function.

These findings are also of interest because synthetic – man made - antisense molecules have been widely used to inhibit conventional genes, including applications as anti-viral and anti-cancer drugs, which are currently on the market or in clinical trials. It can now be argued that this same principle already has been used by nature on a massive scale.


Many of the described antisense genes are also unusual because they do not encode for proteins and therefore do not fit into the classical definition of a gene. This concept of non-protein-coding RNA is supported by the data in an accompanying report entitled “The Transcriptional Landscape of the Mammalian Genome” by the FANTOM Consortium in the same issue of Science. Since mammals, like humans and mice only have slightly more conventional genes (around 22,000) than a simple worm, the results clearly indicate that while proteins comprise the essential components of our cells, the development of multicellular organisms like mammals is controlled by vast amounts of regulatory noncoding RNAs that until recently were not suspected to exist or be relevant to our biology. Moreover, since most proteins are similar among mammals it also suggests that many of the differences between species may be embedded in the differences in the RNA regulatory control systems, which are evolving much faster than the protein components.

If correct, these findings will radically alter our understanding of genetics and how information is stored in our genome, and how this information is transacted to control the incredibly complex process of mammalian development, with implications for the future of biological research, medicine and biotechnology.

Both of these publications are part of a long-standing international effort and represent an enormous body of work.

Sabina Bossi | alfa
Further information:
http://info.ki.se/article_en.html?ID=4323

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>