Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The second DNA string is also important

02.09.2005


The FANTOM Consortium for Genome Exploration Research Group and Karolinska Institutet announce the publication of “Antisense Transcription in the Mammalian Genome” in Science, September 2nd 2005.



It has been known for over half a century that our genetic material occurs as a double strand of DNA molecules. Only one of these strands – the so-called sense strand - encodes for proteins, the building blocks of our cells that in turn make up our bodies. Then what about the other DNA strand – the antisense strand - can it also exert functions? The answer is yes, it can produce so-called antisense genes that are read in our cells in the opposite direction of the real – sense - genes. This phenomenon has previously been regarded as rare, but scientists now show that it is actually the rule rather than the exception. More importantly, these antisense genes are now shown to be extensively used to modulate the expression of the conventional - sense – genes in our cells. Antisense genes are therefore likely to participate in the control of many, perhaps all, cell and body function.

These findings are also of interest because synthetic – man made - antisense molecules have been widely used to inhibit conventional genes, including applications as anti-viral and anti-cancer drugs, which are currently on the market or in clinical trials. It can now be argued that this same principle already has been used by nature on a massive scale.


Many of the described antisense genes are also unusual because they do not encode for proteins and therefore do not fit into the classical definition of a gene. This concept of non-protein-coding RNA is supported by the data in an accompanying report entitled “The Transcriptional Landscape of the Mammalian Genome” by the FANTOM Consortium in the same issue of Science. Since mammals, like humans and mice only have slightly more conventional genes (around 22,000) than a simple worm, the results clearly indicate that while proteins comprise the essential components of our cells, the development of multicellular organisms like mammals is controlled by vast amounts of regulatory noncoding RNAs that until recently were not suspected to exist or be relevant to our biology. Moreover, since most proteins are similar among mammals it also suggests that many of the differences between species may be embedded in the differences in the RNA regulatory control systems, which are evolving much faster than the protein components.

If correct, these findings will radically alter our understanding of genetics and how information is stored in our genome, and how this information is transacted to control the incredibly complex process of mammalian development, with implications for the future of biological research, medicine and biotechnology.

Both of these publications are part of a long-standing international effort and represent an enormous body of work.

Sabina Bossi | alfa
Further information:
http://info.ki.se/article_en.html?ID=4323

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>