Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Montreal researchers probe the genetic basis of memory


A group of Montreal researchers has discovered that GCN2, a protein in cells that inhibits the conversion of new information into long-term memory, may be a master regulator of the switch from short-term to long-term memory. Their paper Translational control of hippocampal synaptic plasticity and memory by the eIF2a kinase GCN2, which was published in the August 25th issue of the journal Nature, provides the first genetic evidence that protein synthesis is critical for the regulation of memory formation.

This new discovery is the fruit of an international collaboration. The work of McGill researchers Nahum Sonenberg, Karim Nader, Wayne Sossin and Claudio Cuello, Jean-Claude Lacaille and Nabil Seidah of the Université de Montréal, and David Ron of New York University sheds light on the mysterious workings of the hippocampus, a region of the brain responsible for learning and memory.

"Not all new information we acquire is stored as long-term memory," says Dr. Costa-Mattioli, a post-doctoral fellow in the laboratory of Dr. Sonenberg, who spearheaded the research project. "For example, it takes most people a number of attempts to learn new things, such as memorizing a passage from a book. The first few times we may initially succeed in memorizing the passage, but the memory may not be stored completely in the brain and we will have to study the passage again."

In a series of experiments, the researchers demonstrated that mice bred without the GCN2 protein (known as transgenic mice) acquire new information that does not fade as easily as that of normal mice. This new information is more frequently converted into long-term memory. The researchers concluded that GCN2 may prevent new information from being stored in long-term memory.

Adds Dr.Jean-Claude Lacaille: "The process of switching to long-term memory in the brain requires both the activation of molecules that facilitate memory storage, and the silencing of proteins such as GCN2 that inhibit memory storage."

Although research on humans is still a distant possibility, the scientists believe their discovery may hold promise in the treatment of a variety of illnesses linked to memory. "The discovery of the role of GCN2 in long-term memory may help us develop targeted drugs designed to enhance memory in patients with memory loss due to illnesses such as Alzheimer’s disease, where protein synthesis and memory are impaired," concludes Dr. Karim Nader.

| EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>