Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking a premature aging syndrome with anticancer drugs

30.08.2005


A class of anticancer drugs currently being evaluated in phase 3 clinical trials may also be an effective treatment for Hutchinson-Gilford progeria syndrome (HGPS), a fatal genetic disorder that causes premature aging. If upcoming studies in a HGPS mouse model validate the results of experiments in cultured cells in the laboratory, a clinical trial of these drugs in HGPS children may begin as early as next spring.



Brian Capell, a New York University medical student participating in the Howard Hughes Medical Institute/National Institutes of Health Research Scholars Program and the first author of the study, reported the findings in the August 29, 2005, issue of the Proceedings of the National Academy of Sciences. The HHMI-NIH Research Scholars Program gives outstanding medical and dental students the opportunity to conduct biomedical research under the direct mentorship of senior NIH research scientists.

Although HGPS is a rare disease that affects only one child in 4 million, the disease has received wide publicity due to its striking nature. Children born with HGPS appear normal, but they experience growth retardation and show symptoms of accelerated aging -- namely hair loss, skin wrinkling, and fat loss -- around the first year of age. Accelerated cardiovascular disease also ensues, which typically causes death around age 12.


In 2003, researchers in Francis Collins’s lab at the National Human Genome Research Institute discovered that mutations in the lamin A (LMNA) gene cause HGPS. The discovery has prompted renewed interest among researchers to study this rare syndrome.

When Capell entered Collins’s lab in July 2004, he immediately set his sights on understanding the molecular basis of HGPS. "What really interested me in this research in the first place were the potential links to aging and atherosclerotic disease," says Capell. Indeed, understanding HGPS at the molecular level may illuminate general processes involved normal human aging.

The LMNA mutation implicated in HGPS causes an internal stretch of 50 amino acids within the encoded lamin A protein to be deleted. This mutated protein is called "progerin." Lamin A normally constitutes a major component of the scaffold-like network of proteins just inside the nuclear membrane called the lamina. When mutated to progerin, however, lamin A fails to integrate properly into the lamina, thereby disrupting the nuclear scaffolding and causing gross disfigurement of the nucleus. Cells with progerin have a nucleus with a characteristic "blebbed," or lobular, shape.

To find its way to the lamina, lamin A carries two tags, rather like zip codes, that help to direct its travels. One tag at the end of lamin A instructs another protein to modify it through a process called farnesylation. Farnesylation tethers lamin A to the inner nuclear membrane. Once there, a second tag within the protein signals an enzyme to cleave off the terminal portion of the protein, including the farnesyl group, freeing lamin A to integrate properly into the nuclear lamina.

Because progerin carries the farnesylation tag but lacks the second cleavage tag, Capell speculated that progerin was becoming permanently stuck to the inner nuclear membrane. There, he suspected, it enmeshed other scaffolding proteins, preventing their proper integration into the lamina. If progerin’s sticking to the inner nuclear membrane is indeed the culprit in nuclear blebbing and the root of the HGPS defect, Capell reasoned that he could prevent these defects by blocking farnesylation of progerin.

Capell’s hunch proved correct. When he changed one amino acid within progerin’s farnesylation tag to prevent the addition of a farnesyl group and tested the effect in cells grown in the laboratory, progerin did not anchor itself to the inner nuclear membrane and instead clumped within the nucleus. Moreover, Capell observed no nuclear blebbing.

Capell then tried treating the cells carrying progerin with farnesyltransferase inhibitors (FTIs), drugs originally developed to inhibit certain cancer-causing proteins that require farnesylation for function, like the famous oncoprotein Ras, which are now being tested in phase III clinical trials of patients with myeloid leukemia. Again, he witnessed no blebbing. More importantly, he saw the same effect when he treated cells grown from skin biopsies of HGPS patients: HGPS cell blebbing decreased to near normal levels.

"FTIs, originally developed for cancer, are capable of reversing the dramatic nuclear structure abnormalities that are the hallmark of cells from children with progeria. This is a stunning surprise, rather like finding out that the key to your house also works in the ignition of your car," says Collins, the principal investigator.

Capell’s work on progerin has so inspired him that he has decided to spend another year in Collins’s lab, with his next task being to test the effects of FTIs in their mouse model of HGPS.

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>