Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blocking a premature aging syndrome with anticancer drugs


A class of anticancer drugs currently being evaluated in phase 3 clinical trials may also be an effective treatment for Hutchinson-Gilford progeria syndrome (HGPS), a fatal genetic disorder that causes premature aging. If upcoming studies in a HGPS mouse model validate the results of experiments in cultured cells in the laboratory, a clinical trial of these drugs in HGPS children may begin as early as next spring.

Brian Capell, a New York University medical student participating in the Howard Hughes Medical Institute/National Institutes of Health Research Scholars Program and the first author of the study, reported the findings in the August 29, 2005, issue of the Proceedings of the National Academy of Sciences. The HHMI-NIH Research Scholars Program gives outstanding medical and dental students the opportunity to conduct biomedical research under the direct mentorship of senior NIH research scientists.

Although HGPS is a rare disease that affects only one child in 4 million, the disease has received wide publicity due to its striking nature. Children born with HGPS appear normal, but they experience growth retardation and show symptoms of accelerated aging -- namely hair loss, skin wrinkling, and fat loss -- around the first year of age. Accelerated cardiovascular disease also ensues, which typically causes death around age 12.

In 2003, researchers in Francis Collins’s lab at the National Human Genome Research Institute discovered that mutations in the lamin A (LMNA) gene cause HGPS. The discovery has prompted renewed interest among researchers to study this rare syndrome.

When Capell entered Collins’s lab in July 2004, he immediately set his sights on understanding the molecular basis of HGPS. "What really interested me in this research in the first place were the potential links to aging and atherosclerotic disease," says Capell. Indeed, understanding HGPS at the molecular level may illuminate general processes involved normal human aging.

The LMNA mutation implicated in HGPS causes an internal stretch of 50 amino acids within the encoded lamin A protein to be deleted. This mutated protein is called "progerin." Lamin A normally constitutes a major component of the scaffold-like network of proteins just inside the nuclear membrane called the lamina. When mutated to progerin, however, lamin A fails to integrate properly into the lamina, thereby disrupting the nuclear scaffolding and causing gross disfigurement of the nucleus. Cells with progerin have a nucleus with a characteristic "blebbed," or lobular, shape.

To find its way to the lamina, lamin A carries two tags, rather like zip codes, that help to direct its travels. One tag at the end of lamin A instructs another protein to modify it through a process called farnesylation. Farnesylation tethers lamin A to the inner nuclear membrane. Once there, a second tag within the protein signals an enzyme to cleave off the terminal portion of the protein, including the farnesyl group, freeing lamin A to integrate properly into the nuclear lamina.

Because progerin carries the farnesylation tag but lacks the second cleavage tag, Capell speculated that progerin was becoming permanently stuck to the inner nuclear membrane. There, he suspected, it enmeshed other scaffolding proteins, preventing their proper integration into the lamina. If progerin’s sticking to the inner nuclear membrane is indeed the culprit in nuclear blebbing and the root of the HGPS defect, Capell reasoned that he could prevent these defects by blocking farnesylation of progerin.

Capell’s hunch proved correct. When he changed one amino acid within progerin’s farnesylation tag to prevent the addition of a farnesyl group and tested the effect in cells grown in the laboratory, progerin did not anchor itself to the inner nuclear membrane and instead clumped within the nucleus. Moreover, Capell observed no nuclear blebbing.

Capell then tried treating the cells carrying progerin with farnesyltransferase inhibitors (FTIs), drugs originally developed to inhibit certain cancer-causing proteins that require farnesylation for function, like the famous oncoprotein Ras, which are now being tested in phase III clinical trials of patients with myeloid leukemia. Again, he witnessed no blebbing. More importantly, he saw the same effect when he treated cells grown from skin biopsies of HGPS patients: HGPS cell blebbing decreased to near normal levels.

"FTIs, originally developed for cancer, are capable of reversing the dramatic nuclear structure abnormalities that are the hallmark of cells from children with progeria. This is a stunning surprise, rather like finding out that the key to your house also works in the ignition of your car," says Collins, the principal investigator.

Capell’s work on progerin has so inspired him that he has decided to spend another year in Collins’s lab, with his next task being to test the effects of FTIs in their mouse model of HGPS.

Jennifer Donovan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>