Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking a premature aging syndrome with anticancer drugs

30.08.2005


A class of anticancer drugs currently being evaluated in phase 3 clinical trials may also be an effective treatment for Hutchinson-Gilford progeria syndrome (HGPS), a fatal genetic disorder that causes premature aging. If upcoming studies in a HGPS mouse model validate the results of experiments in cultured cells in the laboratory, a clinical trial of these drugs in HGPS children may begin as early as next spring.



Brian Capell, a New York University medical student participating in the Howard Hughes Medical Institute/National Institutes of Health Research Scholars Program and the first author of the study, reported the findings in the August 29, 2005, issue of the Proceedings of the National Academy of Sciences. The HHMI-NIH Research Scholars Program gives outstanding medical and dental students the opportunity to conduct biomedical research under the direct mentorship of senior NIH research scientists.

Although HGPS is a rare disease that affects only one child in 4 million, the disease has received wide publicity due to its striking nature. Children born with HGPS appear normal, but they experience growth retardation and show symptoms of accelerated aging -- namely hair loss, skin wrinkling, and fat loss -- around the first year of age. Accelerated cardiovascular disease also ensues, which typically causes death around age 12.


In 2003, researchers in Francis Collins’s lab at the National Human Genome Research Institute discovered that mutations in the lamin A (LMNA) gene cause HGPS. The discovery has prompted renewed interest among researchers to study this rare syndrome.

When Capell entered Collins’s lab in July 2004, he immediately set his sights on understanding the molecular basis of HGPS. "What really interested me in this research in the first place were the potential links to aging and atherosclerotic disease," says Capell. Indeed, understanding HGPS at the molecular level may illuminate general processes involved normal human aging.

The LMNA mutation implicated in HGPS causes an internal stretch of 50 amino acids within the encoded lamin A protein to be deleted. This mutated protein is called "progerin." Lamin A normally constitutes a major component of the scaffold-like network of proteins just inside the nuclear membrane called the lamina. When mutated to progerin, however, lamin A fails to integrate properly into the lamina, thereby disrupting the nuclear scaffolding and causing gross disfigurement of the nucleus. Cells with progerin have a nucleus with a characteristic "blebbed," or lobular, shape.

To find its way to the lamina, lamin A carries two tags, rather like zip codes, that help to direct its travels. One tag at the end of lamin A instructs another protein to modify it through a process called farnesylation. Farnesylation tethers lamin A to the inner nuclear membrane. Once there, a second tag within the protein signals an enzyme to cleave off the terminal portion of the protein, including the farnesyl group, freeing lamin A to integrate properly into the nuclear lamina.

Because progerin carries the farnesylation tag but lacks the second cleavage tag, Capell speculated that progerin was becoming permanently stuck to the inner nuclear membrane. There, he suspected, it enmeshed other scaffolding proteins, preventing their proper integration into the lamina. If progerin’s sticking to the inner nuclear membrane is indeed the culprit in nuclear blebbing and the root of the HGPS defect, Capell reasoned that he could prevent these defects by blocking farnesylation of progerin.

Capell’s hunch proved correct. When he changed one amino acid within progerin’s farnesylation tag to prevent the addition of a farnesyl group and tested the effect in cells grown in the laboratory, progerin did not anchor itself to the inner nuclear membrane and instead clumped within the nucleus. Moreover, Capell observed no nuclear blebbing.

Capell then tried treating the cells carrying progerin with farnesyltransferase inhibitors (FTIs), drugs originally developed to inhibit certain cancer-causing proteins that require farnesylation for function, like the famous oncoprotein Ras, which are now being tested in phase III clinical trials of patients with myeloid leukemia. Again, he witnessed no blebbing. More importantly, he saw the same effect when he treated cells grown from skin biopsies of HGPS patients: HGPS cell blebbing decreased to near normal levels.

"FTIs, originally developed for cancer, are capable of reversing the dramatic nuclear structure abnormalities that are the hallmark of cells from children with progeria. This is a stunning surprise, rather like finding out that the key to your house also works in the ignition of your car," says Collins, the principal investigator.

Capell’s work on progerin has so inspired him that he has decided to spend another year in Collins’s lab, with his next task being to test the effects of FTIs in their mouse model of HGPS.

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>