Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First production of human monoclonal antibodies in chicken eggs published in Nature Biotechnology

29.08.2005


Chicken-produced antibodies demonstrate enhanced cell killing compared to conventionally produced anti-cancer antibodies

Origen Therapeutics today announced the first published scientific report of fully functional, human sequence monoclonal antibodies (mAbs) produced in chickens. The antibodies were expressed solely in the chicken oviduct and deposited into egg white in concentrations of 1-3 milligrams per egg. Moreover, antibodies produced in this manner demonstrated 10-100 fold greater cell-killing ability (ADCC) compared to therapeutic antibodies produced by conventional cell culture methods.

The new report was published in the September issue of Nature Biotechnology by researchers from Origen Therapeutics and their collaborators at Medarex, Texas A&M University and the University of California, Los Angeles. A research brief commenting on the potential impact of this development for the production of human therapeutic proteins was also published in the September issue of Nature Medicine.



"This work demonstrates the potential for producing therapeutic proteins with enhanced properties in the eggs of chickens as an alternative to established mammalian cell culture systems," said Robert J. Etches, Ph.D., D. Sc., Origen Therapeutics vice president, research. "Antibodies produced by this method had very similar physical and biological characteristics to those produced in CHO cells, including nearly identical binding curves, similar affinities, and an equal ability to be internalized by antigen on prostate cancer cells. At the same time, chicken-produced antibodies lacked the sugar residue, fucose, which greatly increases their cell-killing activity compared to CHO-produced antibodies."

To create the antibody-producing chickens, the researchers first inserted into chicken embryonic stem cells the genes encoding the antibody and the regulatory sequences restricting its deposition to egg white. The stem cells were then introduced into chick embryos. At this stage of development, the embryonic stem cells can make significant contributions to the developing chicken. Resulting chimeras with large contributions from the stem cells lay eggs containing milligram amounts of antibody, which is then separated from the egg white proteins generating the purified product.

"This work represents a considerable advance over past efforts to develop avian transgenes, which were limited to the insertion of only small pieces of DNA," commented Dr. Etches. "The technology described here is a general method for inserting DNA encoding proteins of essentially any size and complexity while achieving high levels of protein expression. Moreover, it is the only technology to date that restricts deposition of the therapeutic protein to egg white."

"Monoclonal antibodies have demonstrated great success as human therapeutics, with over 25 approved for human therapeutic use and an increasing number of these proteins in clinical development," continued Dr. Etches. "We expect the demand for more potent anti-cancer monoclonal antibodies and for lower production costs to increase at a rate that will tax existing cell culture production systems. The introduction of this new chicken-based production technology will be of considerable interest to an industry coping with the commercial supply of an ever increasing number of therapeutic antibodies."

"We believe the chicken system is an attractive one for therapeutic protein production compared to either plant systems or to other transgenic animal systems," said Robert Kay, Ph.D., Origen Therapeutics president and chief executive officer. "The fact that the chicken-produced anti-cancer antibodies show dramatically enhanced cell killing activity elevates the chicken system considerably relative to other non-traditional production technologies and some traditional cell culture methods as well."

"Furthermore," Dr. Kay continued, "unlike other transgenic animal systems, the time from antibody identification to production in eggs can be as short as 8 months versus 18 months to 3 years for goats or cattle. The egg is sterile and stable, providing a good starting material for isolation and purification of the protein of interest. Moreover, conditions for good manufacturing practices have been long-established for vaccine production in chicken eggs."

"This work really exemplifies the spirit of our Small Business Innovation Research grant program," said Matthew E. Portnoy, Ph.D., program director at the National Institute of General Medical Sciences at the National Institutes of Health. "This new technology has the potential to drive down drug manufacturing costs, which could make medicines and health insurance plans less expensive for all of us."

Ellen M. Martin | EurekAlert!
Further information:
http://www.origentherapeutics.com
http://www.pacbell.net

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>