Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First production of human monoclonal antibodies in chicken eggs published in Nature Biotechnology

29.08.2005


Chicken-produced antibodies demonstrate enhanced cell killing compared to conventionally produced anti-cancer antibodies

Origen Therapeutics today announced the first published scientific report of fully functional, human sequence monoclonal antibodies (mAbs) produced in chickens. The antibodies were expressed solely in the chicken oviduct and deposited into egg white in concentrations of 1-3 milligrams per egg. Moreover, antibodies produced in this manner demonstrated 10-100 fold greater cell-killing ability (ADCC) compared to therapeutic antibodies produced by conventional cell culture methods.

The new report was published in the September issue of Nature Biotechnology by researchers from Origen Therapeutics and their collaborators at Medarex, Texas A&M University and the University of California, Los Angeles. A research brief commenting on the potential impact of this development for the production of human therapeutic proteins was also published in the September issue of Nature Medicine.



"This work demonstrates the potential for producing therapeutic proteins with enhanced properties in the eggs of chickens as an alternative to established mammalian cell culture systems," said Robert J. Etches, Ph.D., D. Sc., Origen Therapeutics vice president, research. "Antibodies produced by this method had very similar physical and biological characteristics to those produced in CHO cells, including nearly identical binding curves, similar affinities, and an equal ability to be internalized by antigen on prostate cancer cells. At the same time, chicken-produced antibodies lacked the sugar residue, fucose, which greatly increases their cell-killing activity compared to CHO-produced antibodies."

To create the antibody-producing chickens, the researchers first inserted into chicken embryonic stem cells the genes encoding the antibody and the regulatory sequences restricting its deposition to egg white. The stem cells were then introduced into chick embryos. At this stage of development, the embryonic stem cells can make significant contributions to the developing chicken. Resulting chimeras with large contributions from the stem cells lay eggs containing milligram amounts of antibody, which is then separated from the egg white proteins generating the purified product.

"This work represents a considerable advance over past efforts to develop avian transgenes, which were limited to the insertion of only small pieces of DNA," commented Dr. Etches. "The technology described here is a general method for inserting DNA encoding proteins of essentially any size and complexity while achieving high levels of protein expression. Moreover, it is the only technology to date that restricts deposition of the therapeutic protein to egg white."

"Monoclonal antibodies have demonstrated great success as human therapeutics, with over 25 approved for human therapeutic use and an increasing number of these proteins in clinical development," continued Dr. Etches. "We expect the demand for more potent anti-cancer monoclonal antibodies and for lower production costs to increase at a rate that will tax existing cell culture production systems. The introduction of this new chicken-based production technology will be of considerable interest to an industry coping with the commercial supply of an ever increasing number of therapeutic antibodies."

"We believe the chicken system is an attractive one for therapeutic protein production compared to either plant systems or to other transgenic animal systems," said Robert Kay, Ph.D., Origen Therapeutics president and chief executive officer. "The fact that the chicken-produced anti-cancer antibodies show dramatically enhanced cell killing activity elevates the chicken system considerably relative to other non-traditional production technologies and some traditional cell culture methods as well."

"Furthermore," Dr. Kay continued, "unlike other transgenic animal systems, the time from antibody identification to production in eggs can be as short as 8 months versus 18 months to 3 years for goats or cattle. The egg is sterile and stable, providing a good starting material for isolation and purification of the protein of interest. Moreover, conditions for good manufacturing practices have been long-established for vaccine production in chicken eggs."

"This work really exemplifies the spirit of our Small Business Innovation Research grant program," said Matthew E. Portnoy, Ph.D., program director at the National Institute of General Medical Sciences at the National Institutes of Health. "This new technology has the potential to drive down drug manufacturing costs, which could make medicines and health insurance plans less expensive for all of us."

Ellen M. Martin | EurekAlert!
Further information:
http://www.origentherapeutics.com
http://www.pacbell.net

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>