Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Mad cow’ proteins successfully detected in blood


Biochemical technique expected to yield new, more effective test for disease-causing prions in cattle and humans

Researchers at the University of Texas Medical Branch at Galveston (UTMB) have found a way to detect in blood the malformed proteins that cause "mad cow disease," the first time such "prions" have been detected biochemically in blood.

The discovery, reported in an article scheduled to appear online in Nature Medicine Aug. 28, is expected to lead to a much more effective detection method for the infectious proteins responsible for brain-destroying disorders, such as bovine spongiform encephalopathy (BSE) in cattle and variant Creutzfeldt-Jakob disease (vCJD) in humans. The blood test would make it much easier to keep BSE-infected beef out of the human food supply, ensure that blood transfusions and organ transplants do not transmit vCJD, and give researchers their first chance to figure out how many people may be incubating the disease.

"The concentration of infectious prion protein in blood is far too small to be detected by the methods used to detect it in the brain, but we know it’s still enough to spread the disease," said UTMB neurology professor Claudio Soto, senior author of the Nature Medicine paper. "The key to our success was developing a technique that would amplify the quantity of this protein more than 10 million-fold, raising it to a detectable level."

Soto and the paper’s other authors, UTMB assistant professor of neurology Joaquin Castilla and research assistant Paula Saá, applied a method they call protein misfolding cyclic amplification (PMCA) to blood samples taken from 18 prion-infected hamsters that had developed clinical symptoms of prion disease. PMCA uses sound waves to vastly accelerate the process that prions use to convert normal proteins to misshapen infectious forms.

Successive rounds of PMCA led to the discovery of prions in the blood of 16 of the 18 infected hamsters. No prions were found in blood samples that were taken from 12 healthy control hamsters and subjected to the same treatment.

"Since the original publication of a paper on our PMCA technology, we’ve spent four years optimizing and automating this process to get to this point," Soto said. "The next step, which we’re currently working on, will be detecting prions in the blood of animals before they develop clinical symptoms and applying the technology to human blood samples."

Tests for infectious prions in cattle and human blood are badly needed. Because current tests require post-slaughter brain tissue for analysis, in the United States only cattle already showing clinical symptoms of BSE (so-called "downer cows") are tested for the disorder. This is true even though vCJD potentially can be transmitted by animals not yet showing symptoms of the disease. (Only two cases of BSE have been found in American cows so far.) And although British BSE cases have been in decline since 1992, scientists believe the British BSE epidemic of the 1980s could have exposed millions of people in the UK and Europe to infectious prions. The extent of the vCJD epidemic is yet unknown. So far the disease has killed around 180 people worldwide, but numbers could reach thousands or even hundreds of thousands in the coming decades. Prions have also been shown to be transmissible through blood transfusions and organ transplants.

"Who knows what the real situation is in cattle in the United States? And with people, we could be sitting on a time bomb, because the incubation period of this disease in humans can be up to 40 years," Soto said. "That’s why a blood test is so important. We need to know the extent of the problem, we need to make sure that beef and the human blood supply are safe, and we need early diagnosis so that when scientists develop a therapy we can intervene before clinical symptoms appear--by then, it’s too late."

Jim Kelly | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>