Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Mad cow’ proteins successfully detected in blood

29.08.2005


Biochemical technique expected to yield new, more effective test for disease-causing prions in cattle and humans



Researchers at the University of Texas Medical Branch at Galveston (UTMB) have found a way to detect in blood the malformed proteins that cause "mad cow disease," the first time such "prions" have been detected biochemically in blood.

The discovery, reported in an article scheduled to appear online in Nature Medicine Aug. 28, is expected to lead to a much more effective detection method for the infectious proteins responsible for brain-destroying disorders, such as bovine spongiform encephalopathy (BSE) in cattle and variant Creutzfeldt-Jakob disease (vCJD) in humans. The blood test would make it much easier to keep BSE-infected beef out of the human food supply, ensure that blood transfusions and organ transplants do not transmit vCJD, and give researchers their first chance to figure out how many people may be incubating the disease.


"The concentration of infectious prion protein in blood is far too small to be detected by the methods used to detect it in the brain, but we know it’s still enough to spread the disease," said UTMB neurology professor Claudio Soto, senior author of the Nature Medicine paper. "The key to our success was developing a technique that would amplify the quantity of this protein more than 10 million-fold, raising it to a detectable level."

Soto and the paper’s other authors, UTMB assistant professor of neurology Joaquin Castilla and research assistant Paula Saá, applied a method they call protein misfolding cyclic amplification (PMCA) to blood samples taken from 18 prion-infected hamsters that had developed clinical symptoms of prion disease. PMCA uses sound waves to vastly accelerate the process that prions use to convert normal proteins to misshapen infectious forms.

Successive rounds of PMCA led to the discovery of prions in the blood of 16 of the 18 infected hamsters. No prions were found in blood samples that were taken from 12 healthy control hamsters and subjected to the same treatment.

"Since the original publication of a paper on our PMCA technology, we’ve spent four years optimizing and automating this process to get to this point," Soto said. "The next step, which we’re currently working on, will be detecting prions in the blood of animals before they develop clinical symptoms and applying the technology to human blood samples."

Tests for infectious prions in cattle and human blood are badly needed. Because current tests require post-slaughter brain tissue for analysis, in the United States only cattle already showing clinical symptoms of BSE (so-called "downer cows") are tested for the disorder. This is true even though vCJD potentially can be transmitted by animals not yet showing symptoms of the disease. (Only two cases of BSE have been found in American cows so far.) And although British BSE cases have been in decline since 1992, scientists believe the British BSE epidemic of the 1980s could have exposed millions of people in the UK and Europe to infectious prions. The extent of the vCJD epidemic is yet unknown. So far the disease has killed around 180 people worldwide, but numbers could reach thousands or even hundreds of thousands in the coming decades. Prions have also been shown to be transmissible through blood transfusions and organ transplants.

"Who knows what the real situation is in cattle in the United States? And with people, we could be sitting on a time bomb, because the incubation period of this disease in humans can be up to 40 years," Soto said. "That’s why a blood test is so important. We need to know the extent of the problem, we need to make sure that beef and the human blood supply are safe, and we need early diagnosis so that when scientists develop a therapy we can intervene before clinical symptoms appear--by then, it’s too late."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>