Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers shed more light on conversion of water to hydrogen gas

29.08.2005


Chemists are several steps closer to teasing hydrogen fuel from water using man-made molecular devices that collect electrons and use them to split hydrogen from oxygen.



Virginia Tech graduate students in chemistry will present two posters at the 230th national meeting of the American Chemical Society in Washington, D.C., Aug. 28 through Sept. 1, 2005, describing photochemical processes.

Electrons are negatively charged particles that allow atoms to react and form bonds. Karen Brewer, professor of chemistry, announced at last August’s ACS meeting that her group was able to use light to initiate electron collection and deliver the electrons to the catalyst site where they can be used to reduce water to hydrogen. "Light energy is converted to chemical energy," Brewer said.


In the past year, the group has come up with additional molecular assemblies that absorb light more efficiently and activate conversion more efficiently. "We have come up with other systems to convert light energy to hydrogen. So we have a better understanding of what parts and properties are key to having a molecular system work," Brewer said.

The researchers are working with the Air Force Research Laboratory, which is modeling what happens in the molecular systems after light is absorbed. "The AFRL researchers are interested in how light causes charge separation in large molecular systems. We have been working together to understand the initial stages of the light activation process in our molecular assemblies," Brewer said.

"Previously we concentrated on collecting light and delivering it to the catalyst site. Now we are concentrating on using this activated catalyst to convert water to hydrogen," Brewer said. "Once we know more about how this process happens, using our supramolecular design process, we can plug in different pieces to make it function better."

Jared Brown, of Salem, Va., will present the poster, "Multielectron photoreduction of mixed metal supramolecular complexes and their application in photochemical hydrogen production" (INOR 138), co-authored by Mark Elvington, of Blacksburg, and Brewer, from 7 to 9 p.m. Sunday, Aug. 28.

Elvington will present the poster, "Supramolecular ruthenium(II), rhodium(III) mixed metal complexes as photochemical molecular devices: Mechanistic studies investigating photoinitiated electron collection (INOR 388), co-authored by Brown and Brewer, from 7 to 9 p.m. Tuesday, Aug. 30.

Poster sessions are in the Washington, D.C., Convention Center Hall A.

ACS summer fellow Shatara Mayfield from North Carolina A&T was awarded a fellowship to spend her summer working on this project.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>