Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers shed more light on conversion of water to hydrogen gas

29.08.2005


Chemists are several steps closer to teasing hydrogen fuel from water using man-made molecular devices that collect electrons and use them to split hydrogen from oxygen.



Virginia Tech graduate students in chemistry will present two posters at the 230th national meeting of the American Chemical Society in Washington, D.C., Aug. 28 through Sept. 1, 2005, describing photochemical processes.

Electrons are negatively charged particles that allow atoms to react and form bonds. Karen Brewer, professor of chemistry, announced at last August’s ACS meeting that her group was able to use light to initiate electron collection and deliver the electrons to the catalyst site where they can be used to reduce water to hydrogen. "Light energy is converted to chemical energy," Brewer said.


In the past year, the group has come up with additional molecular assemblies that absorb light more efficiently and activate conversion more efficiently. "We have come up with other systems to convert light energy to hydrogen. So we have a better understanding of what parts and properties are key to having a molecular system work," Brewer said.

The researchers are working with the Air Force Research Laboratory, which is modeling what happens in the molecular systems after light is absorbed. "The AFRL researchers are interested in how light causes charge separation in large molecular systems. We have been working together to understand the initial stages of the light activation process in our molecular assemblies," Brewer said.

"Previously we concentrated on collecting light and delivering it to the catalyst site. Now we are concentrating on using this activated catalyst to convert water to hydrogen," Brewer said. "Once we know more about how this process happens, using our supramolecular design process, we can plug in different pieces to make it function better."

Jared Brown, of Salem, Va., will present the poster, "Multielectron photoreduction of mixed metal supramolecular complexes and their application in photochemical hydrogen production" (INOR 138), co-authored by Mark Elvington, of Blacksburg, and Brewer, from 7 to 9 p.m. Sunday, Aug. 28.

Elvington will present the poster, "Supramolecular ruthenium(II), rhodium(III) mixed metal complexes as photochemical molecular devices: Mechanistic studies investigating photoinitiated electron collection (INOR 388), co-authored by Brown and Brewer, from 7 to 9 p.m. Tuesday, Aug. 30.

Poster sessions are in the Washington, D.C., Convention Center Hall A.

ACS summer fellow Shatara Mayfield from North Carolina A&T was awarded a fellowship to spend her summer working on this project.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>