Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The link between fasting and acute attacks of porphyria

26.08.2005


A team of researchers has discovered a molecular missing link that helps explain why fasting brings on acute attacks of the genetic disease hepatic porphyria, according to a new report in the 26 August issue of the journal Cell. The finding could help improve treatments for those suffering from the disease, which may have been the culprit behind the "madness" of King George III of England.



Porphyria disease is caused by defects in the enzyme pathway that produces heme, a critical iron compound found throughout the body, most notably in red blood cells. The defects lead to the overproduction and toxic accumulation of the intermediate molecules that eventually become heme. Researchers and physicians have long known that fasting can cause acute attacks of the disease, and that the attacks can be relieved with glucose or other high-carbohydrate treatments, but the exact link between fasting and the attacks has been mysterious until now.

In the Cell study, Bruce Spiegelman of the Dana-Farber Cancer Institute and Harvard Medical School and colleagues show that fasting increases levels of a metabolic protein called PGC-1a. The "starvation" signal that fasting sends throughout the body prompts PGC-1a to jump-start the process of creating glucose from scratch in the liver. However, PGC-1a also regulates the activity of an enzyme called ALAS-1, the first key enzyme in the heme production pathway.


The higher levels of PGC-1a produce higher levels of ALAS-1, leading to a toxic buildup of precursor heme molecules, Spiegelman and colleagues found.

The finding explains why glucose infusions are helpful in treating acute attacks since the glucose boost can shut off the starvation signal and return PGC-1a levels back to normal.

However, the discovery could pave the way for new porphyria therapies that focus on PGC-1a itself rather that relying on high-carbohydrate treatments, the researchers suggest.

"Unfortunately, because of the therapeutic high carbohydrate intake, patients with hepatic porphyrias are prone to weight gain. Losing excess weight is very difficult for some of these patients because of fasting-induced acute attacks. Hopefully, our findings described here might lead to the development of more specific treatments for these patients," Spiegelman and colleagues say.

However, since fasting boosts PGC-1a levels, "it is also important that patients not fast or strongly diet," Spiegelman adds.

The researchers tested the link between PGC-1a and ALAS-1 in mice engineered to lack PGC-1a in the liver. In these mice, ALAS-1 levels did not rise as dramatically as in normal mice after fasting or after chemical treatment that mimicked some of the enzyme defects in genetic porphyria.

Although drugs like alcohol and barbiturates can also provoke an acute porphyria attack, PGC-1a is not involved in attacks brought on by barbiturates, Spiegelman and colleagues found after examining the effects of phenobarbital in both normal mice and mice without PGC-1a in their livers.

Acute porphyria attacks can include severe abdominal pain, skin sensitivity to sunlight, and psychiatric disorders like hysteria, which may have been the source of King George III’s well-known insanity, according to some historians.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>