Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team discovers hormone that causes malaria mosquito to urinate

25.08.2005


When a mosquito sucks blood from a human, it will take in twice its body weight in blood. To decrease this added weight, the mosquito urinates on its victim to release fluids. Stimulation of this process when the mosquito is not feeding could make the mosquito die. Photo courtesy of Geoff Coast, University of London.


Discovery has implications for control of mosquitoes, malaria and West Nile Virus

Prior to coming to Nevada 16 years ago, David Schooley was a key figure at a small company in Palo Alto, Calif. that developed methoprene, an insecticide that halts the maturation of insect larvae to adults.

Methoprene, which has the same effect as an insect hormone called juvenile hormone, also stops the insect from reproducing. It is being used heavily throughout the United States to help prevent the spread of West Nile Virus.



Schooley’s contribution to the development of methoprene was to prove that it is harmless to animals and the environment.

"Table salt is far more toxic," said Schooley, a professor of biochemistry at the University of Nevada, Reno’s College of Agriculture, Biotechnology and Natural Resources

The problem with methoprene, however, is that for a species such as the tobacco hornworm, methoprene causes it to grow larger instead of transforming into a moth, enhancing the pest’s ability to devastate crops.

"It’s not a great way to sell an insecticide to a farmer," Schooley said. "Most money in pesticide development is in making insecticides for pests which attack crops."

This is what lead Schooley, and his colleague Geoff Coast of the University of London, down the path of finding a way to control insects that are pests at the larval stage, a path that has them instead potentially paving the way for better mosquito control.

A potential solution to the problem of killing insects at any stage of development may be found in peptide hormones, small proteins in all animals that regulate most bodily functions. While researching the genome of the malaria mosquito, Schooley discovered two different types of diuretic hormones similar to those from other insect species. These were synthesized at the University of Nevada, Reno then sent to London to study their effects on mosquitoes.

When a mosquito sucks blood from a human—and only pregnant female mosquitoes do this—it will take in twice its body weight in blood. To decrease this added weight, the mosquito urinates on its victim to release fluids.

Coast discovered that introducing one of the two diuretic hormones, DH31, into the mosquito causes the mosquito to excrete fluid rich in sodium chloride, the main salt in blood.

"Only DH31 causes the massive loss of sodium chloride which causes the mosquito to pee,” Schooley said. “Stimulation of this process when the mosquito is not feeding could make the mosquito die.”

Implications of this discovery, which is published in September’s issue of the Journal of Experimental Biology, could lead to the development of a pesticide for controlling mosquitoes.

"Synthetic compounds that mimic the action of these peptide hormones should be useful as pesticides," Schooley said. "Like methoprene, DH31 only affects lower species such as insects, which suggests it should be very safe to non-insect species."

Schooley said that discovery, development and extensive environmental testing of such a
pesticide could take up to 10 years, however.

Schooley and Coast’s research was funded by a $927,000 grant from the National Institutes of Health.

Bob Conrad | EurekAlert!
Further information:
http://www.cabnr.unr.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>