Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team discovers hormone that causes malaria mosquito to urinate

25.08.2005


When a mosquito sucks blood from a human, it will take in twice its body weight in blood. To decrease this added weight, the mosquito urinates on its victim to release fluids. Stimulation of this process when the mosquito is not feeding could make the mosquito die. Photo courtesy of Geoff Coast, University of London.


Discovery has implications for control of mosquitoes, malaria and West Nile Virus

Prior to coming to Nevada 16 years ago, David Schooley was a key figure at a small company in Palo Alto, Calif. that developed methoprene, an insecticide that halts the maturation of insect larvae to adults.

Methoprene, which has the same effect as an insect hormone called juvenile hormone, also stops the insect from reproducing. It is being used heavily throughout the United States to help prevent the spread of West Nile Virus.



Schooley’s contribution to the development of methoprene was to prove that it is harmless to animals and the environment.

"Table salt is far more toxic," said Schooley, a professor of biochemistry at the University of Nevada, Reno’s College of Agriculture, Biotechnology and Natural Resources

The problem with methoprene, however, is that for a species such as the tobacco hornworm, methoprene causes it to grow larger instead of transforming into a moth, enhancing the pest’s ability to devastate crops.

"It’s not a great way to sell an insecticide to a farmer," Schooley said. "Most money in pesticide development is in making insecticides for pests which attack crops."

This is what lead Schooley, and his colleague Geoff Coast of the University of London, down the path of finding a way to control insects that are pests at the larval stage, a path that has them instead potentially paving the way for better mosquito control.

A potential solution to the problem of killing insects at any stage of development may be found in peptide hormones, small proteins in all animals that regulate most bodily functions. While researching the genome of the malaria mosquito, Schooley discovered two different types of diuretic hormones similar to those from other insect species. These were synthesized at the University of Nevada, Reno then sent to London to study their effects on mosquitoes.

When a mosquito sucks blood from a human—and only pregnant female mosquitoes do this—it will take in twice its body weight in blood. To decrease this added weight, the mosquito urinates on its victim to release fluids.

Coast discovered that introducing one of the two diuretic hormones, DH31, into the mosquito causes the mosquito to excrete fluid rich in sodium chloride, the main salt in blood.

"Only DH31 causes the massive loss of sodium chloride which causes the mosquito to pee,” Schooley said. “Stimulation of this process when the mosquito is not feeding could make the mosquito die.”

Implications of this discovery, which is published in September’s issue of the Journal of Experimental Biology, could lead to the development of a pesticide for controlling mosquitoes.

"Synthetic compounds that mimic the action of these peptide hormones should be useful as pesticides," Schooley said. "Like methoprene, DH31 only affects lower species such as insects, which suggests it should be very safe to non-insect species."

Schooley said that discovery, development and extensive environmental testing of such a
pesticide could take up to 10 years, however.

Schooley and Coast’s research was funded by a $927,000 grant from the National Institutes of Health.

Bob Conrad | EurekAlert!
Further information:
http://www.cabnr.unr.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>