Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New look at DNA hints at origin of ultraviolet damage

25.08.2005


Chemists at Ohio State University have gained new insight into how sunlight affects DNA. And what they found overturns ideas about genetic mutation that originated decades ago.



In the current issue of the journal Nature, Bern Kohler and his colleagues report that DNA dissipates the energy from ultraviolet (UV) radiation in a kind of energy wave that travels up the edge of the DNA molecule, as if the energy were climbing one side of the helical DNA “ladder.”

The finding lends insight into how DNA damage occurs along the ladder’s edge.


It also counters what scientists proposed in the 1960s: that UV causes mutations by damaging the bonds between base pairs – the horizontal “rungs” on the ladder. The new study shows that UV energy moves vertically, between successive bases.

In undamaged DNA, there are no chemical bonds between vertically stacked bases. But the bases do interact electronically, which is why Kohler thinks they form an efficient conduit for UV energy to flow through.

“Even though paired bases are connected by weak chemical bonds, it’s the interactions that take place without chemical bonds – the interactions between stacked bases – that are much more important for dissipating UV energy,” Kohler said.

The Nature paper builds on work from five years ago, when the associate professor of chemistry and his team first discovered that single DNA bases convert harmful UV energy to heat to prevent sun damage in the same way that sunscreen molecules protect sunbathers.

Back then, they studied only single bases floating in water. They hit the bases with a kind of UV strobe light, and saw that the energy was released as heat in less than one trillionth of a second.

Their new experiments show that the behavior of full DNA differs profoundly from that of isolated bases. When the chemists turned their strobe light on whole strands of novel DNA, the UV energy still changed to heat eventually, but the energy dissipated a thousand times more slowly.

That’s an eternity in the DNA universe, where scientists need to use special equipment just to see these ultra-fast chemical reactions happen. Yet, Kohler’s team saw no evidence that the UV affected the chemical bonds between the base pairs. They surmised that the UV energy was leaving the molecule by traveling along the edges instead.

“This slow relaxation of energy is utterly different from the mechanism in single bases that transforms the energy into heat in less than a trillionth of a second,” Kohler said.

“Eventually, the energy does turn into heat, but the important point is that the energy is retained within the molecule for much longer times,” he added. “This can cause all kinds of photochemical havoc.”

It could be that when base pairs are aligned in their natural state in a DNA strand, the electronic interactions along the stack provide an easier way for DNA to rid itself of UV energy, compared to passing the energy back and forth between the two bases in a base pair as scientists have previously thought.

In fact, it was the brilliance of James Watson and Francis Crick’s discovery of the structure of DNA that kept this secret hidden for so many years, Kohler said. Their work revealed that the DNA helix was composed of paired bases, and that discovery led researchers to focus on how UV energy might interact with base pairs.

“In fact, so much attention has been paid to base pairing that this other interaction, base stacking, has been neglected,” Kohler said.

Base stacking is frequently overlooked, he admitted, because the ladder terminology that we use to describe DNA structure makes us think that there are open spaces between successive rungs of base pairs.

A better analogy would be a stack of coins, he said. Bases are stacked right on top of each other.

Here’s what he and his team suspect is happening during the UV energy wave: as sunlight warms our skin, UV photons are absorbed by the bases, causing their electrons to vibrate. These high-energy vibrations nudge the atoms in the bases around, but only along one edge of the DNA ladder at a time.

If all goes well, the DNA returns to normal after the energy wave passes. But some of the time, the atoms don’t return to their original positions, and new chemical bonds are formed.

Scientists know that such accidental bonds create “photolesions” – injuries that prevent DNA from replicating properly. The details of the process aren’t fully understood, but studies suggest that photolesions cause genetic mutations that lead to diseases such as cancer.

This new research helps explain why most photolesions are formed between bases on the same side of the DNA strand.

Scientists believe that proteins in the body repair DNA by removing photolesions and filling in new material, using the remaining DNA strand as a template.

If UV damage is confined to one side of the DNA double helix or the other, then the undamaged side makes an easy template for the proteins to follow. But if both sides of a strand were damaged, then the template would effectively be missing.

The Nature paper highlights the shortcomings of previous studies, which applied results from isolated base pairs to the full DNA molecule. “It turns out that you can’t extrapolate the results of base pairs to whole strands of DNA,” Kohler said.

The discovery has clear implications for biology, since it can help explain the DNA repair process.

“The ability to observe what happens to electronic energy in DNA on such short time scales also extends the hope that methods such as ours can finally determine how DNA is damaged by UV light in the first place,” Kohler said.

The Ohio State chemists are now testing other DNA strands. For simplicity, they first wanted to compare the behavior of single Adenine and Thymine bases with strands entirely composed of those two bases. That is the work described in Nature.

Kohler’s team includes Carlos E. Crespo-Hernández and Boiko Cohen, both postdoctoral researchers in the Department of Chemistry at Ohio State. Their work was sponsored by the National Institutes of Health and the Alexander von Humboldt Foundation, and was performed at Ohio State’s Center for Chemical and Biophysical Dynamics, which is funded by the National Science Foundation.

Bern Kohler | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

nachricht NIH researchers identify striking genomic signature shared by 5 types of cancer
05.02.2016 | NIH/National Human Genome Research Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>