Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Anemone Armies Battle to a Standoff


Clashing colonies of sea anemones fight as organized armies with distinct castes of warriors, scouts, reproductives and other types, according to a new study.

Warrior anemones reach over from several rows behind the front to attack animals from a neighboring colony. (Rick Grosberg/UC Davis photo)

The sea anemone Anthopleura elegantissima lives in large colonies of genetically identical clones on boulders around the tide line. Where two colonies meet they form a distinct boundary zone. Anemones that contact an animal from another colony will fight, hitting each other with special tentacles that leave patches of stinging cells stuck to their opponent.

David J. Ayre from the University of Wollongong, Australia, and Rick Grosberg from UC Davis have previously taken individual anemone polyps from separate colonies and studied fighting strategies one-on-one. But that’s like trying to understand two armies by taking a single soldier from each side, Grosberg said.

Now, the researchers have been able to study two entire colonies as they clash.

When the tide is out, the polyps are contracted and quiet. As the tide covers the colonies, "scouts" move out into the border to look for empty space to occupy. Larger, well-armed "warriors" inflate their stinging arms and swing them around. Towards the center of the colony, poorly armed "reproductive" anemones stay out of the fray and conduct the clone’s business of breeding.

When anemones from opposing colonies come in contact, they usually fight. But after about 20 or 30 minutes of battle the clones settle down to a truce until the next high tide.

It’s not just polyps along the border between two clones that clash. Polyps three or four rows away from the front will reach over their comrades to engage in fights, Grosberg said.

Differentiation into warriors seems to depend on a combination of signals from enemy stings and the genetics of the colony. Different colonies react differently to similar signals, explaining why different clones are organized into so many different kinds of armies. But borders between colonies can remain stable for years, even though the two colonies organize their armies in different ways.

The study shows that very complex, sophisticated, and coordinated behaviors can emerge at the level of the group, even when the group members are very simple organisms with nothing resembling a brain, Grosberg said. The research was published in the June issue of the journal Animal Behaviour.

Andy Fell | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>