Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Malfunctioning bone marrow cells sabotage nerve cells in diabetes


Malfunctioning bone marrow cells that produce insulin appear to cause a dangerous nerve condition called neuropathy that disables many people with diabetes, said a research team led by Baylor College of Medicine in Houston.

The report from researchers at BCM, Shiga University of Medical Science in Japan, and the University of Chicago appears online today in the Proceedings of the National Academy of Sciences.

The finding not only provides a basis for understanding the dangerous nerve condition in diabetics, but could eventually lead to a treatment for this problem, said Dr. Lawrence Chan, chief of diabetes, endocrinology and metabolism at BCM. It may even provide an explanation for some of the other complications associated with the disease.

"These insulin-producing bone marrow cells are like terrorists that infiltrate the nerve-cell populations," he said. They produce proteins that can kill or subvert the purposes of nerve cells "almost like a suicide bomb," said Chan.

Diabetes mellitus, which afflicts roughly 18 million Americans, is a major health problem that affects multiple organs and tissues. Diabetes can be treated. However, treatment does not ward off many of the complications. Neuropathy is a common complication that causes pain and ultimately loss of sensation in the extremities and can lead to amputation.

Previously, Chan and members of his laboratory had found that bone marrow cells were among a group of cells in organs other than the pancreas that unexpectedly produced small amounts of insulin. In pursuing that finding, he and his colleagues found that the bone marrow cells that produced insulin adversely affected nerve cells or neurons.

"In our latest studies, we were surprised to discover that insulin-producing cells originating from bone marrow caused premature cell death and dysfunction when they merged with neurons, resulting in neuropathy," said Chan.

"It all began several years ago, when we were developing gene therapy to cure diabetes in mice. By chance, we observed insulin-producing bone marrow cells outside the pancreas, and wondered why these cells were migrating to other organs and whether they were detrimental or beneficial," said Chan.

In pursuit of this curious phenomenon, Drs. Tomoya Terashima and Hideto Kojima from BCM and Dr. Mineko Fujimiya of Shiga University of Medical Science in Shiga, Japan, in collaboration with Chan, performed numerous experiments in diabetic rats and mice. Their work defined the role of the aberrant cells in causing neuropathy.

They found that, in diabetes, only nerve cells that have fused with bone marrow cells display the abnormal function and premature death found in neuropathy. Nerve cells that have not merged with the insulin-producing bone marrow cells remain intact and function normally.

"Based on these findings, we speculate that a similar process contributes to some, if not all, of the other chronic complications of diabetes, and we look forward to pursuing this possibility. Discovering an underlying cause of diabetic neuropathy may enable us to design treatment strategies to prevent this complication in the future," concluded Chan.

April Sutton | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>