Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malfunctioning bone marrow cells sabotage nerve cells in diabetes

23.08.2005


Malfunctioning bone marrow cells that produce insulin appear to cause a dangerous nerve condition called neuropathy that disables many people with diabetes, said a research team led by Baylor College of Medicine in Houston.



The report from researchers at BCM, Shiga University of Medical Science in Japan, and the University of Chicago appears online today in the Proceedings of the National Academy of Sciences.

The finding not only provides a basis for understanding the dangerous nerve condition in diabetics, but could eventually lead to a treatment for this problem, said Dr. Lawrence Chan, chief of diabetes, endocrinology and metabolism at BCM. It may even provide an explanation for some of the other complications associated with the disease.


"These insulin-producing bone marrow cells are like terrorists that infiltrate the nerve-cell populations," he said. They produce proteins that can kill or subvert the purposes of nerve cells "almost like a suicide bomb," said Chan.

Diabetes mellitus, which afflicts roughly 18 million Americans, is a major health problem that affects multiple organs and tissues. Diabetes can be treated. However, treatment does not ward off many of the complications. Neuropathy is a common complication that causes pain and ultimately loss of sensation in the extremities and can lead to amputation.

Previously, Chan and members of his laboratory had found that bone marrow cells were among a group of cells in organs other than the pancreas that unexpectedly produced small amounts of insulin. In pursuing that finding, he and his colleagues found that the bone marrow cells that produced insulin adversely affected nerve cells or neurons.

"In our latest studies, we were surprised to discover that insulin-producing cells originating from bone marrow caused premature cell death and dysfunction when they merged with neurons, resulting in neuropathy," said Chan.

"It all began several years ago, when we were developing gene therapy to cure diabetes in mice. By chance, we observed insulin-producing bone marrow cells outside the pancreas, and wondered why these cells were migrating to other organs and whether they were detrimental or beneficial," said Chan.

In pursuit of this curious phenomenon, Drs. Tomoya Terashima and Hideto Kojima from BCM and Dr. Mineko Fujimiya of Shiga University of Medical Science in Shiga, Japan, in collaboration with Chan, performed numerous experiments in diabetic rats and mice. Their work defined the role of the aberrant cells in causing neuropathy.

They found that, in diabetes, only nerve cells that have fused with bone marrow cells display the abnormal function and premature death found in neuropathy. Nerve cells that have not merged with the insulin-producing bone marrow cells remain intact and function normally.

"Based on these findings, we speculate that a similar process contributes to some, if not all, of the other chronic complications of diabetes, and we look forward to pursuing this possibility. Discovering an underlying cause of diabetic neuropathy may enable us to design treatment strategies to prevent this complication in the future," concluded Chan.

April Sutton | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>