Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malfunctioning bone marrow cells sabotage nerve cells in diabetes

23.08.2005


Malfunctioning bone marrow cells that produce insulin appear to cause a dangerous nerve condition called neuropathy that disables many people with diabetes, said a research team led by Baylor College of Medicine in Houston.



The report from researchers at BCM, Shiga University of Medical Science in Japan, and the University of Chicago appears online today in the Proceedings of the National Academy of Sciences.

The finding not only provides a basis for understanding the dangerous nerve condition in diabetics, but could eventually lead to a treatment for this problem, said Dr. Lawrence Chan, chief of diabetes, endocrinology and metabolism at BCM. It may even provide an explanation for some of the other complications associated with the disease.


"These insulin-producing bone marrow cells are like terrorists that infiltrate the nerve-cell populations," he said. They produce proteins that can kill or subvert the purposes of nerve cells "almost like a suicide bomb," said Chan.

Diabetes mellitus, which afflicts roughly 18 million Americans, is a major health problem that affects multiple organs and tissues. Diabetes can be treated. However, treatment does not ward off many of the complications. Neuropathy is a common complication that causes pain and ultimately loss of sensation in the extremities and can lead to amputation.

Previously, Chan and members of his laboratory had found that bone marrow cells were among a group of cells in organs other than the pancreas that unexpectedly produced small amounts of insulin. In pursuing that finding, he and his colleagues found that the bone marrow cells that produced insulin adversely affected nerve cells or neurons.

"In our latest studies, we were surprised to discover that insulin-producing cells originating from bone marrow caused premature cell death and dysfunction when they merged with neurons, resulting in neuropathy," said Chan.

"It all began several years ago, when we were developing gene therapy to cure diabetes in mice. By chance, we observed insulin-producing bone marrow cells outside the pancreas, and wondered why these cells were migrating to other organs and whether they were detrimental or beneficial," said Chan.

In pursuit of this curious phenomenon, Drs. Tomoya Terashima and Hideto Kojima from BCM and Dr. Mineko Fujimiya of Shiga University of Medical Science in Shiga, Japan, in collaboration with Chan, performed numerous experiments in diabetic rats and mice. Their work defined the role of the aberrant cells in causing neuropathy.

They found that, in diabetes, only nerve cells that have fused with bone marrow cells display the abnormal function and premature death found in neuropathy. Nerve cells that have not merged with the insulin-producing bone marrow cells remain intact and function normally.

"Based on these findings, we speculate that a similar process contributes to some, if not all, of the other chronic complications of diabetes, and we look forward to pursuing this possibility. Discovering an underlying cause of diabetic neuropathy may enable us to design treatment strategies to prevent this complication in the future," concluded Chan.

April Sutton | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>