Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malfunctioning bone marrow cells sabotage nerve cells in diabetes

23.08.2005


Malfunctioning bone marrow cells that produce insulin appear to cause a dangerous nerve condition called neuropathy that disables many people with diabetes, said a research team led by Baylor College of Medicine in Houston.



The report from researchers at BCM, Shiga University of Medical Science in Japan, and the University of Chicago appears online today in the Proceedings of the National Academy of Sciences.

The finding not only provides a basis for understanding the dangerous nerve condition in diabetics, but could eventually lead to a treatment for this problem, said Dr. Lawrence Chan, chief of diabetes, endocrinology and metabolism at BCM. It may even provide an explanation for some of the other complications associated with the disease.


"These insulin-producing bone marrow cells are like terrorists that infiltrate the nerve-cell populations," he said. They produce proteins that can kill or subvert the purposes of nerve cells "almost like a suicide bomb," said Chan.

Diabetes mellitus, which afflicts roughly 18 million Americans, is a major health problem that affects multiple organs and tissues. Diabetes can be treated. However, treatment does not ward off many of the complications. Neuropathy is a common complication that causes pain and ultimately loss of sensation in the extremities and can lead to amputation.

Previously, Chan and members of his laboratory had found that bone marrow cells were among a group of cells in organs other than the pancreas that unexpectedly produced small amounts of insulin. In pursuing that finding, he and his colleagues found that the bone marrow cells that produced insulin adversely affected nerve cells or neurons.

"In our latest studies, we were surprised to discover that insulin-producing cells originating from bone marrow caused premature cell death and dysfunction when they merged with neurons, resulting in neuropathy," said Chan.

"It all began several years ago, when we were developing gene therapy to cure diabetes in mice. By chance, we observed insulin-producing bone marrow cells outside the pancreas, and wondered why these cells were migrating to other organs and whether they were detrimental or beneficial," said Chan.

In pursuit of this curious phenomenon, Drs. Tomoya Terashima and Hideto Kojima from BCM and Dr. Mineko Fujimiya of Shiga University of Medical Science in Shiga, Japan, in collaboration with Chan, performed numerous experiments in diabetic rats and mice. Their work defined the role of the aberrant cells in causing neuropathy.

They found that, in diabetes, only nerve cells that have fused with bone marrow cells display the abnormal function and premature death found in neuropathy. Nerve cells that have not merged with the insulin-producing bone marrow cells remain intact and function normally.

"Based on these findings, we speculate that a similar process contributes to some, if not all, of the other chronic complications of diabetes, and we look forward to pursuing this possibility. Discovering an underlying cause of diabetic neuropathy may enable us to design treatment strategies to prevent this complication in the future," concluded Chan.

April Sutton | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>