Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gap-climbing fruit flies reveal components of goal-driven behaviors

23.08.2005


Like humans, other animals are faced with everyday obstacles in their physical environments and must engage appropriate decision-making and motor skills to deal with them. Navigating these obstacles can involve highly complex events in mammals and other vertebrates, but in new work, researchers have employed an ingenious obstacle-based system for studying the control and structure of goal-oriented motor programs in the fruit fly Drosophila.



The findings are reported in Current Biology by Roland Strauss, of the University of Würzburg, and Simon Pick, of the University of Ulm, both in Germany.

In their studies, the researchers presented freely walking flies with a chasm in their path. The flies had shortened wings and could not fly over the gap, and they were thus forced to decide whether to attempt to cross the gap "by foot." The researchers found that the flies first visually measure the gap width and then only cross the gap if it is a traversable width. If the chasm is short, flies engage in an extraordinary crossing behavior that the researchers showed involve three motor programs. High-speed video analyses revealed that flies can flexibly combine, and iteratively improve, these three behavioral adaptations in order to traverse gaps much broader than their own body size. The decisive phase for the climbing success of a fly is the formation of a "bridge" with the hind and middle legs still holding on to the starting side and the front legs just about reaching the edge of the target side. Forward shifting of the body into the gap, primarily by little hind-leg steps, contributes the most to gap-crossing. Auxiliary actions of the middle legs keep the body close to a horizontal position and help in reaching the other side. In the last step, the front legs stretch as much as possible to grasp the other side.


In some ways, the motor programs employed by the flies show high similarity to vertebrate motor programs--for example, when a person is trying to reach a jar on a shelf high above her head, she will reach out with her arm and hand, will straighten her back, and tiptoe.

Studying the underlying control principles and neuronal circuits in invertebrates rather than in mice or cats involves fewer ethical problems and is less-expensive research.

Using noninvasive neurogenetic techniques for the analysis of the underlying motor-control system, Pick and Strauss showed that in order to reach a goal, flies compose complex motor patterns from different behavioral subunits. In their genetic analysis, the researchers found mutant flies with defects specifically in deciding whether to cross, another group of mutants performing the correct motor program at a wrong position, and still another group of mutants performing climbing actions at the correct position but without one of the three motor components. This goal-directed flexibility of the fly’s motor programs characterized in the new work profoundly changes our view of how insect behavior is composed and employed in response to the environment.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.current-biology.com

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>