Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug reverses effects of sleep deprivation on brain

23.08.2005


Research in monkeys suggests that a new drug can temporarily improve performance and reverse the effects of sleep deprivation on the brain, which would be a breakthrough in helping shift workers, health professionals, military personnel and others who must function at top performance in spite of sleep deficits.



"In addition to improving performance under normal conditions, the drug restored performance that was impaired after sleep loss," said Samuel Deadwyler, Ph.D., senior researcher, from Wake Forest University School of Medicine. "Brain imaging revealed that one basis for the drug’s effects was to reverse changes in brain patterns induced by sleep deprivation."

The study’s results are reported on-line today in the journal Public Library of Science- Biology. The drug, currently known as CX717, is designed to act on a type of receptor located throughout the brain that is involved in cell-to-cell communication. It has been tested in sleep-deprived humans with positive results, according to the developer, Cortex Pharmaceuticals.


The Wake Forest research was funded by the U.S. Department of Defense Advanced Research Projects Agency, as part of a larger effort to mitigate or eliminate the effect of sleep deprivation on military personnel, and by the National Institutes of Health. In addition to Deadwyler, the research team included Linda J. Porrino, Ph.D., James Daunais, Ph.D., Robert Hampson, Ph.D., from the Department of Physiology and Pharmacology at Wake Forest, and Gary Rogers from Cortex Pharmaceuticals.

The researchers first tested normal, alert monkeys on a matching task similar to a video game. Each monkey was shown one clip art picture at one position on the screen, and after a delay of one to 30 seconds, picked the original out of a random display of two to six different images to get a juice reward. The monkeys were then given varying doses of the drug and re-tested. At the highest dose tested, the drug improved performance to near perfect for the easier trials and by about 15 percent overall.

Next, the monkeys were tested after they were sleep-deprived for 30 to 36 hours, which Deadwyler estimates is equivalent to humans going 72 hours without sleep. When compared to when they were alert, the monkeys’ overall performance was reduced under all test conditions, even on the easiest trials. But, when the monkeys were again sleep-deprived and re-tested after being given CX717, their performance was restored to normal levels.

The researchers used positron emission tomography (PET) to gain images of brain activity while the animals were performing the matching task. These scans showed that the drug was able to reverse most of the changes in activity patterns that occurred with sleep deprivation – which may explain its success at increasing performance.

The PET images showed that when the monkeys were performing the task while sleep-deprived, activity in the frontal cortex, an area of the brain associated with higher mental processing, decreased and activity in the temporal lobe, associated with memory for recent events, increased. The researchers suspect that this might be the brain’s way of compensating for the effects of sleep deprivation. After the drug was administered, the brain patterns in these regions returned to normal.

"The effect was to reverse the patterns of activation to the same as when the animal performed the task under normal conditions," Deadwyler said. "The drug didn’t cause overall brain arousal, but increased the ability of certain affected areas to become active in a normal, non-sleep-deprived manner."

The drug, known as an ampakine, is designed to target AMPA receptors that are located throughout the brain. These receptors are part of the cellular communication process that involves the neurotransmitter glutamate. The drug prolongs the action of glutamate, allowing more effective communication. Because the drug acts differently from caffeine and other stimulants, it does not seem to result in side effects such as hyperactivity, distorted thinking or extended wakefulness.

"It’s possible that ampakines could also be used to enhance other cognitive deficits, such as occur in Alzheimer’s disease, after a stroke or other forms of dementia," Deadwyler said.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>