Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene associated with Fanconi anemia ’explains’ hallmark chromosomal instability

22.08.2005


Surprising findings from just five patients has led to the first proof of how the rare disorder Fanconi anemia causes chromosomal instability. A team of international researchers, led by scientists at Rockefeller University, reports the findings in the September issue of Nature Genetics.



The scientists found a gene mutation not previously known to be related to Fanconi anemia, and they say that BRIP1 is the first gene associated with the disease whose protein has a known function. That protein, known as BACH1, normally helps DNA unwind in order to be repaired, and if it cannot function, chromosomal damage accumulates, they say.

"We have known for decades that patients with Fanconi anemia have chromosomes that break easily, but none of the many genes previously found to be associated with the disease explained this phenomenon. This new link to BRIP1 mutations may have revealed a central player in development of the disease," says the study’s principal investigator, Arleen Auerbach, Ph.D., who directs the Laboratory of Human Genetics and Hematology at Rockefeller. Working with her were researchers from two German universities and from Memorial Sloan-Kettering Cancer Center in New York.


"Given these new findings, we can now suggest that DNA double-strand breaks are the lesions that underlie the pathology of this disease," says Auerbach, who is internationally known for her work on the disorder and for the large Fanconi anemia registry she maintains at Rockefeller.

Fanconi anemia (FA) is an inherited disorder characterized by developmental abnormalities, life-threatening bone-marrow failure, and predisposition to a variety of cancers. Researchers have long known that patients with the disease have chromosomes that are not readily repaired when they break; in fact, a blood test created in 1981 by Auerbach, which uses a chemical that specifically increases that damage, is now used worldwide to diagnose FA.

Auerbach and others suspected this hallmark chromosomal instability is associated with defects in caretaker genes that help maintain the integrity of DNA. One reason for this hypothesis is that some already identified Fanconi anemia proteins accumulated in the nuclei of normal cells along with protein produced by the gene BRCA1, which is believed to help maintain DNA stability, but when mutated, is the major breast cancer susceptibility protein.

Researchers had theorized that the underlying fault in FA lies in the seven genes that need to work together to produce a protein "complex" that activates another existing cellular protein known as FANCD2. FANCD2 is then believed to work with BRCA1 protein to repair the constant DNA damage that results from excessive sunlight, radiation, exposure to carcinogenic chemicals and even from normal cell division.

"All of these seven Fanconi genes have to be normal -- if one isn’t, then FANCD2 is not activated," says Auerbach. But she adds that no one knows what the proteins FANCD2, BRCA1 or even BRCA2 -- produced by another breast cancer susceptibility gene that has also been linked to FANCD2 -- are actually doing.

"No one knows the precise role of any of these genes and proteins, but we believe that if BRCA1 or BRCA2, or any of the Fanconi genes that activate D2 are defective, a sequence of events is disrupted and DNA repair is blocked," she says.

But Auerbach and her team of researchers were puzzled that about 20 patients in the 1,000-plus International Fanconi Anemia Registry (IFAR) had no mutations in any of the genes known to be associated with the disease, yet there was no question they had Fanconi anemia. "These patients had the disease, yet their FANCD2 was activated normally, and there were no problems with BRCA1 or BRCA2," she says.

So Auerbach and her colleagues selected four families for a detailed gene analysis, based on the suspicion that there was, in each of the families, a "founder effect" -- a change in the frequency of a gene mutation that occurs when a population is descended from only a few individuals. Two of these families were Inuit (aboriginal Canadians): one had two children with Fanconi anemia and the other family had a single child with the disease. "We suspected there was a single mutation in a single gene that affected these children," Auerbach says.

The researchers also selected two Hispanic families in which they knew the parents were first cousins, and each had an affected child.

The researchers first applied a test that could tell them whether the offending gene was "upstream" or "downstream" from activated FANCD2 -- that is, did action of the mutant gene fall in the molecular pathway before FANCD2 was activated, or after, respectively? The answer was that the problem was located downstream from a normally functioning FANCD2.

The researchers then mapped SNPs in the genome of those patients and families, looking for changes in which a single chemical building block in the DNA differs from the usual building block at that position. Because FA is a recessive genetic disease, an affected child needs to inherit two copies of an errant gene, each from a parent that carried a single mutation.

They were startled to find only one suspect location in the entire genome, on chromosome 17, that was present in all four families. Further research uncovered two candidate genes within that region, and none of the patients had an abnormality in one of them. But they all had mutations in the second gene, BRIP1.

"What was very surprisingly to us is that while all five patients were homozygous for a mutation in the gene, as expected, all had the same mutation in this gene," Auerbach says. In other words, the five patients each inherited two copies of the same mutation, one from each parent.

When the researchers looked at the other families in their registry with no known mutations in any of the genes associated with the disease, they found six more patients with this same BRIP1 mutation, three of whom were homozygous.

Now the story began to make sense to the researchers, since the protein, BACH1, produced by BRIP1, was known to be a DNA helicase, a class of enzymes which unwind the two strands of the DNA double helix so that DNA synthesis can take place. And they knew from the scientific literature that BACH1 interacts with BRCA1 protein.

"This is the first gene associated with Fanconi anemia that we have a defined function for," says Auerbach. "It interacts directly with BRCA1, and is known to play a role in the repair of DNA double-strand breaks."

BACH1 could be the link between FANCD2 and BRCA1, the researchers say.

"It may be that DNA can’t be repaired without a normally functioning BACH1," says Auerbach. "So perhaps FANCD2 activation isn’t the endpoint, as had been thought, but that it has to do something downstream that can’t be accomplished if BACH1 is not present."

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>