Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alteration of brain protein regulates learning

18.08.2005


Researchers at UT Southwestern Medical Center have identified a biochemical switch that affects how neurons fire in a part of the brain associated with learning, findings that may aid in understanding schizophrenia and Alzheimer’s disease.



The research sheds new light on the action of reelin, a protein known to be important in the nervous system. During development, reelin sends cues to migrating neurons, telling them where they’re supposed to go. In adult mice, reelin has recently been implicated in the formation of memories, and reduced production of reelin has been associated with schizophrenia in humans.

In a report published in the Aug.18 issue of the journal Neuron, Dr. Joachim Herz, professor of molecular genetics and a member of the Center for Basic Neuroscience at UT Southwestern and the paper’s senior author, studied an area of the brain called the hippocampus, which is important for learning. He and his colleagues focused on the interaction of reelin and two other molecules, Apoer2 and the NMDA receptor.


In the nervous system the NMDA receptor is embedded in the membrane of synapses - gaps between nerve cells - where it is involved in receiving signals from other nerve cells. Apoer2 is another receptor which is associated with the NMDA receptor. When reelin encounters the cell, it attaches to Apoer2, which then boosts the activity of the NMDA receptor by promoting a chemical modification of the part of the NMDA receptor inside the cell. The result of this modification is that signals being received by the nerve cell are amplified - and better reception means better learning.

This transition in the primary function of Apoer2, from guiding neurons in the embryonic brain to regulating synaptic signaling, occurs around the time of birth. A small string of amino acids, the building blocks of proteins, gets added near one end of Apoer2 and is essential for this new function. Adding the new amino acids is similar to cutting a rope, splicing in a short portion, and lashing the ends in place.

This longer form of Apoer2 is necessary for reelin to act upon the NMDA receptor, Dr. Herz and his colleagues found. When reelin binds to the longer Apoer2, the NMDA receptor alters its structure and actions, resulting in the strengthening of the signals the nerve cells receive.

When the researchers created mutant mice in which Apoer2 was missing the spliced portion, they found that the mice had difficulties with learning and memory. They were slow to learn where a hidden platform was in murky water, among other tasks, and when the electrical activity of neurons was measured in the hippocampus of these mice there was no longer any detectable reaction to reelin.

Thus, the extra string of amino acids in Apoer2 seems to work like a switch that patches the reelin signal through to the NMDA receptor and, thereby, plays a central role for learning and memory in the whole animal.

In addition to reelin, Apoer2 binds to a protein called ApoE. One form of this molecule, called ApoE4, has been shown to substantially increase the risk of Alzheimer’s disease in older people. Understanding how ApoE4 functions in the brain and interacts with ApoE receptors, such as Apoer2, is critical for gaining further insight into the mysterious mechanisms that cause this debilitating neurodegenerative disease, Dr. Herz said. The loss of synapses that occurs in Alzheimer’s disease is the primary cause for the dementia in the afflicted patients.

"Our findings put ApoE receptors at the heart of the matter," said Dr. Herz.

Other UT Southwestern researchers involved in the study were Dr. Uwe Beffert, postdoctoral researcher in biophysics and molecular genetics and lead author of the study; Dr. Robert Hammer, professor of biochemistry; Dr. Wei-Ping Li, assistant professor of cell biology; Andre Durudas, student research assistant in internal medicine; and Irene Masiulis, student research assistant in biophysics and molecular genetics. Researchers from Vanderbilt University, Baylor College of Medicine and the Center for Neuroscience in Freiburg, Germany, also participated.

The work was supported by the National Institutes of Health, the Alzheimer’s Association, the Wolfgang Paul Award of the Alexander von Humboldt Foundation, the Perot Foundation, the American Health Assistance Foundation, the Human Frontier Science Program, the Canadian Institutes of Health Research and the Deutsche Forschungsgemeinschaft.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>