Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expression levels may reveal stage of Huntington’s disease

17.08.2005


Markers could help track response to new therapies, protective strategies



A survey of the genome of patients with Huntington’s Disease (HD) has identified potential markers of the progression of this devastating neurological disorder. Researchers from the MassGeneral Institute for Neurodegenerative Disorders (MIND) found a set of genes that are expressed at higher levels in blood samples from people with HD than in samples from controls. The expression of these genes also rose as the disease progressed from asymptomatic to symptomatic stage. The study has been published in the August 2 issue of Proceedings of the National Academy of Sciences.

"These biomarkers may be valuable in monitoring patients’ response to experimental treatments," says Dimiti Krainc, MD, PhD, of MIND and the MGH Department of Neurology. "Since these changes can be seen at the earliest stages of the disease, they may be particularly helpful in evaluating neuroprotective strategies that could be applied before symptoms develop."


HD is an inherited disorder caused by a mutation in the gene for a protein called huntingtin. Although its normal function has not yet been discovered, huntingtin is essential for growth and development. The HD-associated mutation involves excessive repetition of a specific gene segment, causing an abnormal version of the protein to accumulate in the brain and destroy brain cells in an area called the striatum. Symptoms of HD, which usually begin to appear in the middle years, include uncontrolled movement, erratic emotions and problems with thinking and memory. Symptoms worsen over the 10- to 30-year course of the disorder, until patients die from a variety of complications.

Although HD appears to affect only the central nervous system, mutant huntingtin and proteins it interacts with are found throughout the body, including blood cells. This suggests that the mutation may have effects that, while not producing symptoms, could show up on a blood test. Such a test could provide a more accessible way to monitor the underlying disease process in the brain. The MGH team analyzed blood samples from patients with HD, including asymptomatic carriers of the HD mutation, and compared their gene expression patterns to those of control participants.

The researchers found hundreds of genes for which expression levels were significantly altered in HD patients or carriers, compared with controls, and then identified a set of 12 genes for which the differences were most significant. In addition, expression levels in younger presymptomatic carriers of the HD mutation were closer to those of the controls and rose to disease-associated levels in carriers approaching the age at which symptoms usually appear. The investigators then analyzed blood samples from participants in a Phase 1 trial of a potential HD treatment and found that four weeks of treatment produced a significant reduction in expression of the 12-gene set in most participants.

"We need to analyze these findings in a larger phase III clinical study where changes in gene expression can be correlated with possible delay in disease onset or progression. Moreover, further research may identify other combinations of marker genes that reflect various stages of HD and predict clinical effects of new experimental treatments," says Krainc. He also notes that the identified 12-gene set is only one potentially useful biomarker, and others of the hundreds of genes with altered expression may also provide critical information in various clinical situations. Krainc is an assistant professor of Neurology at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>