Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple explanation for complex pattern of feather development

17.08.2005


Biologists testing a mathematical model of the mechanism birds use to control the growth of complex feathers found that plumed feather structures involve the coordination of at least two genes that activate and that inhibit barb growth.



"Understanding these mechanisms of feather growth gives a whole new perspective on the unique beauty of feathers," said Richard Prum, senior author on the study. Prum is the William Robertson Coe Professor of Ornithology, and Curator of Ornithology and Vertebrate Zoology at Yale’s Peabody Museum of Natural History.

An eclectic team of biologists used a combination of mathematical and molecular methods to reveal some of the secrets of branched feather growth, and propose how the unique complexity of feathers may have evolved. Ornithologist Prum led a team including anatomists Matthew Harris and John Fallon at the University of Wisconsin, statistician Scott Williamson at Cornell and Hans Meinhardt at the Max Plank Institute.


Their findings provide the best experimental evidence for a classical theory for growth of complex biological structures. In the 1950’s, Alan Turing, mathematician, pioneering computer scientist and code-breaker, proposed that repeated patterns could emerge through the interactions among chemical morphogens or molecules that cause things to develop -- an activator that makes things happen, and an inhibitor that suppresses the activator.

To test the model in feathers, Harris forced expression of the activator, Shh, or the inhibitor, Bmp2, in the skin of six-day old chick embryos by injecting them with a retrovirus. The results were seen in localized patches and demonstrated that a simple relationship between developmental genes could be the basis for formation of feather structures. This was the first documentation, in any plant or animal, that signaling molecules in development can actually behave as envisioned by Turing 50 years ago.

This work provides a key to some of these most basic questions of biology. The findings also indicate that more complex shafted feathers evolved from the simpler downy tufts by the addition of new players to the original activator-inhibitor pair. Prum is now following up on several clues in the search for these other molecular signals.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>