Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene loss accelerates aging

17.08.2005


Researchers have discovered that the loss of a gene called p63 accelerates aging in mice. Similar versions of the gene are present in many organisms, including humans. Therefore, the p63 gene is likely to play a fundamental biological role in aging-related processes.


8-month-old normal (top) and p63 deficient mice. Courtesy Alea Mills, Cold Spring Harbor Laboratory



"To study how the p63 gene works, we devised a system for eliminating it from adult mouse tissues. What struck us right away was that these p63 deficient mice were aging prematurely," says Alea Mills of Cold Spring Harbor laboratory, who led the research.

Mice that are born without the p63 gene do not survive. Therefore, Mills had previously conducted extensive studies of mice that are born with only one copy of the gene. Still, these animals die at a young age. So to study p63 function in adults, Mills and her colleagues devised a sophisticated molecular genetic technique that enabled them to eliminate both copies of the gene from particular tissues--including skin and other multi-layered epithelial tissues--after the animals reached maturity.


The effects of premature aging observed in these p63 deficient mice (image available on request) were hair loss, reduced fitness and body weight, progressive curvature of the spine, and a shortened lifespan.

"Aging and cancer are two sides of the same coin. In one case, cells stop dividing and in the other, they can’t stop dividing. We suspect that having the right amount of the p63 protein in the right cells at the right time creates a balance that enables organisms to live relatively cancer-free for a reasonably long time," says Mills, who adds that this is the first time the p63 gene has been implicated in aging.

"I first presented these results at a meeting in Tuscany. I don’t want to sound flippant, but if you have to grow old somewhere, that’s about as good a place as any to do it," says Mills.

The study is published in the September issue of the journal Genes & Development (advance online publication August 17). The other researchers involved in the study were Scott Lowe, Ying Wu, Xuecui Guo, and first author William Keyes of Cold Spring Harbor Laboratory, and Hannes Vogel of Stanford University.

Researchers who did not participate in the study but are familiar with its findings include:

Carol Prives (Columbia University); Judith Campisi (Lawrence Berkeley National Laboratory); David Lane (University of Dundee); Lawrence Donehower (Baylor College of Medicine)

Lisa Becker | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>