Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Activated Stat5 protein in prostate cancer can predict outcome

15.08.2005


Georgetown University research may help target treatment



Researchers from Lombardi Comprehensive Cancer Center at Georgetown University found that testing for an activated Stat5 protein in prostate tumor tissue effectively predicts which men have a form of prostate cancer that may become more aggressive and life threatening.

In the August 15 issue of Clinical Cancer Research, the researchers report that "Stat5" protein in the nucleus of prostate cancer cells was a significant predictor of which patients would develop a worrisome recurrence years after their prostate cancer was initially treated. Stat5 is a protein that, when activated, signals cancer cells to continually grow and survive. The study investigated prostate cancer biopsies or prostate cancer tissues obtained from surgery from 357 prostate cancer patients, and matched active Stat5 levels with outcome.


Given further validation, the findings offer hope that a "biomarker" can be developed to help oncologists and urologists to identify patients that are more likely to have a recurring and/or eventually life-threatening prostate cancer. Specifically, these patients with potentially aggressive prostate cancer should be actively treated and closely monitored in contrast to men with less aggressive prostate cancer who may safely choose "watchful waiting," especially if they are elderly, the researchers say.

Sorting out the few aggressive prostate tumors from the many that are indolent is a problem that has plagued the treatment of prostate cancer, said Marja Nevalainen, M.D., Ph.D., assistant professor in the Department of Oncology at Lombardi Comprehensive Cancer Center and principal investigator of the study.

"Most patients diagnosed with prostate cancer have slow-growing tumors that don’t need aggressive therapy, but doctors do not have a way to identify the few men whose cancer is potentially dangerous. The result is that many patients are over-treated," she said.

"If future studies with Stat5 continue to show that it can help in predicting disease outcome, then we can test tumor biopsy samples for Stat5 and tailor treatment accordingly," Nevalainen said.

In the study, Georgetown researchers found that patients with "mid-grade" tumors who had high levels of activated Stat5 in their prostate cancer cells were 1.7 times more likely to experience disease progression compared to patients without activated Stat5. That corresponds to a 15-year, progression-free survival of 46 percent versus 62 percent, respectively.

"Mid-grade tumors are the most difficult to predict for the clinical outcome, said Nevalainen, "therefore, the most immediate use of Stat5 in prostate cancer as a marker would be for identification of the subgroup of mid-grade prostate cancers that are likely to progress early to androgen-independence and metastatic disease" said Nevalainen. "We feel that patients in this group who test positive for activated Stat5 should not remain treated with watchful waiting only, but should be actively and extensively treated."

When biopsy samples from all the patients in the study were analyzed and Stat5 readings were compared to their outcome, those with activated Stat5 had a progression-free survival rate of 44 percent, compared to 65 percent in patients whose cancer was free of activated Stat5.

These findings are the latest in a series of studies led by Nevalainen highlighting the role of Stat5 in prostate cancer development.

Among Nevalainen’s earlier findings:

  • Stat5 protein is particularly plentiful in the most aggressive prostate cancers, which have often spread by the time they are diagnosed.
  • Stat5 can be experimentally inhibited - active Stat5 protein can be stopped before it reaches the DNA of the cell and triggers growth. This research has led to work to develop a pharmacological agent for human use. "There are only few treatment options available for advanced prostate cancer now, and we hope that we can develop a drug that might offer hope for patients with aggressive prostate cancer in the future," she said.

Laura Cavender | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>