Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Activated Stat5 protein in prostate cancer can predict outcome

15.08.2005


Georgetown University research may help target treatment



Researchers from Lombardi Comprehensive Cancer Center at Georgetown University found that testing for an activated Stat5 protein in prostate tumor tissue effectively predicts which men have a form of prostate cancer that may become more aggressive and life threatening.

In the August 15 issue of Clinical Cancer Research, the researchers report that "Stat5" protein in the nucleus of prostate cancer cells was a significant predictor of which patients would develop a worrisome recurrence years after their prostate cancer was initially treated. Stat5 is a protein that, when activated, signals cancer cells to continually grow and survive. The study investigated prostate cancer biopsies or prostate cancer tissues obtained from surgery from 357 prostate cancer patients, and matched active Stat5 levels with outcome.


Given further validation, the findings offer hope that a "biomarker" can be developed to help oncologists and urologists to identify patients that are more likely to have a recurring and/or eventually life-threatening prostate cancer. Specifically, these patients with potentially aggressive prostate cancer should be actively treated and closely monitored in contrast to men with less aggressive prostate cancer who may safely choose "watchful waiting," especially if they are elderly, the researchers say.

Sorting out the few aggressive prostate tumors from the many that are indolent is a problem that has plagued the treatment of prostate cancer, said Marja Nevalainen, M.D., Ph.D., assistant professor in the Department of Oncology at Lombardi Comprehensive Cancer Center and principal investigator of the study.

"Most patients diagnosed with prostate cancer have slow-growing tumors that don’t need aggressive therapy, but doctors do not have a way to identify the few men whose cancer is potentially dangerous. The result is that many patients are over-treated," she said.

"If future studies with Stat5 continue to show that it can help in predicting disease outcome, then we can test tumor biopsy samples for Stat5 and tailor treatment accordingly," Nevalainen said.

In the study, Georgetown researchers found that patients with "mid-grade" tumors who had high levels of activated Stat5 in their prostate cancer cells were 1.7 times more likely to experience disease progression compared to patients without activated Stat5. That corresponds to a 15-year, progression-free survival of 46 percent versus 62 percent, respectively.

"Mid-grade tumors are the most difficult to predict for the clinical outcome, said Nevalainen, "therefore, the most immediate use of Stat5 in prostate cancer as a marker would be for identification of the subgroup of mid-grade prostate cancers that are likely to progress early to androgen-independence and metastatic disease" said Nevalainen. "We feel that patients in this group who test positive for activated Stat5 should not remain treated with watchful waiting only, but should be actively and extensively treated."

When biopsy samples from all the patients in the study were analyzed and Stat5 readings were compared to their outcome, those with activated Stat5 had a progression-free survival rate of 44 percent, compared to 65 percent in patients whose cancer was free of activated Stat5.

These findings are the latest in a series of studies led by Nevalainen highlighting the role of Stat5 in prostate cancer development.

Among Nevalainen’s earlier findings:

  • Stat5 protein is particularly plentiful in the most aggressive prostate cancers, which have often spread by the time they are diagnosed.
  • Stat5 can be experimentally inhibited - active Stat5 protein can be stopped before it reaches the DNA of the cell and triggers growth. This research has led to work to develop a pharmacological agent for human use. "There are only few treatment options available for advanced prostate cancer now, and we hope that we can develop a drug that might offer hope for patients with aggressive prostate cancer in the future," she said.

Laura Cavender | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Molecular switch will facilitate the development of pioneering electro-optical devices

24.05.2018 | Power and Electrical Engineering

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>