Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Activated Stat5 protein in prostate cancer can predict outcome

15.08.2005


Georgetown University research may help target treatment



Researchers from Lombardi Comprehensive Cancer Center at Georgetown University found that testing for an activated Stat5 protein in prostate tumor tissue effectively predicts which men have a form of prostate cancer that may become more aggressive and life threatening.

In the August 15 issue of Clinical Cancer Research, the researchers report that "Stat5" protein in the nucleus of prostate cancer cells was a significant predictor of which patients would develop a worrisome recurrence years after their prostate cancer was initially treated. Stat5 is a protein that, when activated, signals cancer cells to continually grow and survive. The study investigated prostate cancer biopsies or prostate cancer tissues obtained from surgery from 357 prostate cancer patients, and matched active Stat5 levels with outcome.


Given further validation, the findings offer hope that a "biomarker" can be developed to help oncologists and urologists to identify patients that are more likely to have a recurring and/or eventually life-threatening prostate cancer. Specifically, these patients with potentially aggressive prostate cancer should be actively treated and closely monitored in contrast to men with less aggressive prostate cancer who may safely choose "watchful waiting," especially if they are elderly, the researchers say.

Sorting out the few aggressive prostate tumors from the many that are indolent is a problem that has plagued the treatment of prostate cancer, said Marja Nevalainen, M.D., Ph.D., assistant professor in the Department of Oncology at Lombardi Comprehensive Cancer Center and principal investigator of the study.

"Most patients diagnosed with prostate cancer have slow-growing tumors that don’t need aggressive therapy, but doctors do not have a way to identify the few men whose cancer is potentially dangerous. The result is that many patients are over-treated," she said.

"If future studies with Stat5 continue to show that it can help in predicting disease outcome, then we can test tumor biopsy samples for Stat5 and tailor treatment accordingly," Nevalainen said.

In the study, Georgetown researchers found that patients with "mid-grade" tumors who had high levels of activated Stat5 in their prostate cancer cells were 1.7 times more likely to experience disease progression compared to patients without activated Stat5. That corresponds to a 15-year, progression-free survival of 46 percent versus 62 percent, respectively.

"Mid-grade tumors are the most difficult to predict for the clinical outcome, said Nevalainen, "therefore, the most immediate use of Stat5 in prostate cancer as a marker would be for identification of the subgroup of mid-grade prostate cancers that are likely to progress early to androgen-independence and metastatic disease" said Nevalainen. "We feel that patients in this group who test positive for activated Stat5 should not remain treated with watchful waiting only, but should be actively and extensively treated."

When biopsy samples from all the patients in the study were analyzed and Stat5 readings were compared to their outcome, those with activated Stat5 had a progression-free survival rate of 44 percent, compared to 65 percent in patients whose cancer was free of activated Stat5.

These findings are the latest in a series of studies led by Nevalainen highlighting the role of Stat5 in prostate cancer development.

Among Nevalainen’s earlier findings:

  • Stat5 protein is particularly plentiful in the most aggressive prostate cancers, which have often spread by the time they are diagnosed.
  • Stat5 can be experimentally inhibited - active Stat5 protein can be stopped before it reaches the DNA of the cell and triggers growth. This research has led to work to develop a pharmacological agent for human use. "There are only few treatment options available for advanced prostate cancer now, and we hope that we can develop a drug that might offer hope for patients with aggressive prostate cancer in the future," she said.

Laura Cavender | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>