Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Firefly protein lets researchers monitor molecule linked to cancer

09.08.2005


Scientists have used a glowing protein from fireflies to observe the activity of a molecule that is an important target for new drugs to treat cancer, autoimmune diseases and several other disorders.



The target molecule, known as IKK (for IKappa kinase), regulates processes that can trigger dramatic changes in cellular physiology. Scientists have linked these changes to many different disorders.

"Our new system allows researchers to monitor whether drugs for these conditions are hitting this exact molecular target in cell culture and laboratory animals," says senior investigator David Piwnica-Worms, M.D., Ph.D., professor of molecular biology and pharmacology and of radiology.


Piwnica-Worms and lead author Shimon Gross, Ph.D., a postdoctoral fellow, measured light from the firefly protein, luciferase, to monitor IKK activity in tumor cells and inflamed liver cells in live mice. They also showed that the technique can greatly reduce the costs of tests that establish the best dosages for drugs that target IKK. Their results appear in the August 2005 issue of Nature Methods.

IKK stands at a pivot point in the middle of an important set of linked chain reactions known as the NF-KappaB pathway. The pathway can start at many different receptors on cell surfaces; its finish changes the activity levels of varying genes. The result, according to Piwnica-Worms, is that the potential reaction patterns in the NF-KappaB pathway form an hourglass-like shape, fanning out among many options at the start, narrowing in the middle, and again fanning out among many options at the end.

"At the waist of that hourglass is IKK," he explains. "This appears to put it in a position to be the key regulator of the pathway, and that has made it a subject of great interest both from the perspective of understanding how this pathway works and from that of developing new drugs for conditions that involve this pathway. "

Piwnica-Worms’ laboratory has previously developed techniques that use luciferase to monitor protein-protein interactions. Researchers can employ an instrument known as an in-vivo bioluminescence camera to take real-time measurements of light from luciferase in cell cultures and in cells within live animals.

To use the firefly protein to monitor IKK, Gross altered cell lines to genetically fuse the luciferase protein to IKB (IKappaB), the protein that comes immediately after IKK in the NF-KappaB pathway. When the pathway is enabled, IKK triggers reactions that lead to the degradation of IKB. In cells with genetically altered IKB, the attached luciferase is broken down too, meaning scientists can detect increased IKK activity via decreased light from the cells.

"This is like doing in-vivo pharmacodynamics and pharmacokinetics," says Piwnica-Worms in reference to the sciences that study the effects, distribution and dissipation of drugs. "Traditionally the only ways we could do those kinds of studies were either to test for levels of the drug in the blood or to label the drug with a radioactive tracer.

"In the case of NF-KappaB, there were also methods that monitored IKK activity via changes in the levels of gene activation at the end of the pathway," he notes. "But those took hours to days to deliver results, and our approach works continuously and in real time."

In their study, Gross and Piwnica-Worms tested the technique in live mice by transplanting genetically altered tumor cells and by using a technique that inserted the fused IKB/luciferase protein into liver cells only. They are currently working to develop a line of mice with the IKB/luciferase fusion built into its genetic code.

In addition, they showed that the system is not only helpful for learning if a drug is having the desired effect, it can also be used to fine-tune drug dosage for maximum benefit.

"One of the reviewers of our paper suggested that we should use the system to produce a full dose-response curve, which helps establish how to best use a drug," Piwnica-Worms says. "Establishing that normally takes 6 months and 300 mice. With our monitoring technique, Shimon did it in a 5-day period using 30 mice. That’s going to lead to tremendous cost savings."

Because the luciferase-based monitoring system allows monitoring in live animals, Gross could perform multiple tests on the same mouse over time. He was also able to monitor the mice for individual variances that could inappropriately bias the results.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>