Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High insulin levels increase inflammatory markers and beta-amyloids, may contribute to Alzheimer’s

09.08.2005


Moderately elevated levels of insulin increase the levels of inflammatory markers and beta-amyloid in plasma and in cerebrospinal fluid, and these markers may contribute to Alzheimer’s disease, according to a new study posted online today from Archives of Neurology, one of the JAMA/Archives journals. The study will be published in the October print edition of the journal.



According to background information in the article, "conditions of insulin resistance and hyperinsulinemia are associated with elevated levels of inflammatory markers and increase the risk for Alzheimer disease (AD). Inflammation has been proposed as a key pathogenic factor for AD."

Mark A. Fishel, M.D., from the University of Washington, Seattle, and colleagues, raised blood insulin levels (while maintaining normal blood sugar levels) in 16 healthy older adults ranging in age from 55 to 81 years, and then measured the changes in levels of inflammatory markers, modulators, and beta-amyloid (a protein associated with AD) in plasma and cerebrospinal fluid.


"Moderate peripheral hyperinsulinemia (increased levels of insulin) provoked striking increases in CNS (central nervous system) inflammatory markers," the authors report. "Our findings suggest that insulin-resistant conditions such as diabetes mellitus and hypertension may increase the risk for AD, in part through insulin-induced inflammation."

"Although this model has obvious relevance for diabetes mellitus, hyperinsulinemia and insulin resistance are widespread conditions that affect many nondiabetic adults with obesity, impaired glucose tolerance, cardiovascular disease, and hypertension. Our results provide a cautionary note for the current epidemic of such conditions, which, in the context of an aging population, may provoke a dramatic increase in the prevalence of AD. More encouragingly, greater understanding of insulin’s role in AD pathogenesis may lead to novel and more effective strategies for treating, delaying, or even preventing this challenging disease," the authors conclude.

Geri Rowe | EurekAlert!
Further information:
http://www.jamamedia.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>