Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High insulin levels increase inflammatory markers and beta-amyloids, may contribute to Alzheimer’s

09.08.2005


Moderately elevated levels of insulin increase the levels of inflammatory markers and beta-amyloid in plasma and in cerebrospinal fluid, and these markers may contribute to Alzheimer’s disease, according to a new study posted online today from Archives of Neurology, one of the JAMA/Archives journals. The study will be published in the October print edition of the journal.



According to background information in the article, "conditions of insulin resistance and hyperinsulinemia are associated with elevated levels of inflammatory markers and increase the risk for Alzheimer disease (AD). Inflammation has been proposed as a key pathogenic factor for AD."

Mark A. Fishel, M.D., from the University of Washington, Seattle, and colleagues, raised blood insulin levels (while maintaining normal blood sugar levels) in 16 healthy older adults ranging in age from 55 to 81 years, and then measured the changes in levels of inflammatory markers, modulators, and beta-amyloid (a protein associated with AD) in plasma and cerebrospinal fluid.


"Moderate peripheral hyperinsulinemia (increased levels of insulin) provoked striking increases in CNS (central nervous system) inflammatory markers," the authors report. "Our findings suggest that insulin-resistant conditions such as diabetes mellitus and hypertension may increase the risk for AD, in part through insulin-induced inflammation."

"Although this model has obvious relevance for diabetes mellitus, hyperinsulinemia and insulin resistance are widespread conditions that affect many nondiabetic adults with obesity, impaired glucose tolerance, cardiovascular disease, and hypertension. Our results provide a cautionary note for the current epidemic of such conditions, which, in the context of an aging population, may provoke a dramatic increase in the prevalence of AD. More encouragingly, greater understanding of insulin’s role in AD pathogenesis may lead to novel and more effective strategies for treating, delaying, or even preventing this challenging disease," the authors conclude.

Geri Rowe | EurekAlert!
Further information:
http://www.jamamedia.org

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>