Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny roundworm’s telomeres help scientists to tease apart different types of aging

08.08.2005


The continual and inevitable shortening of telomeres, the protective "caps" at the end of all 46 human chromosomes, has been linked to aging and physical decline. Once they are gone, so are we. But there are more ways than one to grow old.



Researchers at Salk Institute for Biological Studies demonstrate for the first time that the roundworm Caenorhabditis elegans succumbs to the trials of old age although its telomeres are still long, and moves with a youthful spring in its crawl despite short telomeres, they report in PLoS Genetics, available online now.

In the past, preventing telomere shortening has often been portrayed as the key to preventing aging and living longer. In their study, Salk scientists Jan Karlseder, an assistant professor in the Regulatory Biology Laboratory, and Andrew Dillin, an assistant professor in the Molecular and Cell Biology Laboratory, provide a much more nuanced view of telomeres and the process of cellular and organismal aging.


"Some long-lived species like humans have telomeres that are much shorter than the telomeres in species like mice, which live only a few years. Nobody yet knows why. But now we have conclusive evidence that telomeres alone do not dictate aging and lifespan," says Karlseder.

Each time a cell divides, its telomeres get shorter, a process called replicative or cellular aging. Some have likened this progressive erosion of telomeres to a genetic biological clock that winds down over time, leading to a gradual decline in our mental and physical prowess. Yet, C. elegans, a tiny creature, which spends the better part of its adult life without a single dividing cell in its body, still shows signs of old age and eventually dies, raising intriguing questions.

Are telomeres in non-dividing cells eroding slowly over time? If so, will worms with longer telomeres live longer? If not, how do worm cells and by extension non-dividing human cells, such as nerve cells, keep track of their biological age? To answer these vexing questions, Karlseder, who is interested in telomeres, teamed up with Dillin, who studies lifespan and aging in C. elegans.

Researchers use this 1 millimeter-long soil roundworm that feeds on bacteria mainly because it is simple, easy to grow in bulk populations, and is quite convenient for genetic analysis.

When these scientists began their work almost nothing was known about worm telomeres. "We had to start at the very beginning. But now we know that C. elegans is the perfect model organism to study telomere biology since their regulation is similar to human telomeres," says first author Marcela Raices, a post-doctoral researcher in Karlseder’s lab.

Many cells in our body keep dividing throughout life (e.g., those that line our digestive tract, blood, and immune cells) because they must be replaced over time. When these cells’ telomeres reach a critically short length, however, they can no longer replicate. The cell’s structure and function begin to fail as it enters this state of growth arrest, called replicative senescence.

"But even in very old people, blood cells, which divide continuously, don’t have critically short telomeres. In humans and, as we know now, in worms, telomere length is certainly not a limiting factor for lifespan," says Karlseder.

The Salk team, which also included graduate student Hugo Maruyama, found that despite the close correlation of telomere length and cellular senescence in mammalian cells, worms with long telomeres were neither long lived, nor did worm populations with short telomeres exhibit a shorter life span. On the other hand, long-lived and short-lived mutant worms could have them either way without any effect on their lifespan. When Raices monitored telomere length over the full lifespan of worms and under stress, a situation reported recently at another laboratory to shorten telomeres in humans, she found absolutely no change.

"For successful aging you have to control both, aging in your dividing cells, which hinges on telomere maintenance, but also aging in your non-dividing cells. We thought that telomeres might play a role in the later but that’s clearly not the case," says Dillin. "What is probably playing a role in the other half of aging is the insulin signaling pathway, proper mitochondrial function and dietary restriction," he reasons.

Several types of cells in our body, such as mature nerve cells in the brain, oocytes, skeletal and heart muscle cells don’t actively divide but stay put just like the cells in adult worms.

"That makes our findings relevant for age-related decline in mental function and neurodegenerative diseases, such as Alzheimer’s," says Karlseder. "Making people live longer is not enough, we want them to grow old healthy," he adds.

"To prevent accelerated aging in an organism, you need to have both proper telomere maintenance and those other genetic pathways intact," says Dillin. "If you wanted to develop a drug to combat aging it wouldn’t be enough to target telomeres, you would also have to target these other genetic pathways."

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>