Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Your tap water: Will that be leaded or unleaded?

08.08.2005


Lead may pose greater leaching risk than standard tests show



In critiquing a common safety standard for brass used in plumbing, researchers have found the regimen may be flawed. As a result, they say, some of the lead that crept into tap water in Washington, D.C., and other metropolitan areas may be traceable to household fixtures, valves and other components and not just pipes and systems further from the home.

The new study looked at the American National Standards Institute/National Sanitation Foundation 61 Section 8 standard--a protocol consisting of specific methods and test-water formulas that governments and industries have relied upon to ensure safe plumbing since 1988.


"As a result of problems identified with the test protocol, some products passing National Sanitation Foundation Section 8 may have a greater capacity to leach lead into water than we believed," said Marc Edwards of Virginia Tech, who is one of the study leaders.

Edwards, Abhijeet Dudi and Nestor Murray, all at Virginia Tech, and Michael Schock, of the Environmental Protection Agency (EPA) National Risk Management Research Laboratory, report their findings in the Aug. 4 issue of the Journal of the American Waterworks Association.

Edwards, Dudi and Murray are members of a multidisciplinary team supported by a National Science Foundation Materials Use: Science, Engineering and Society (MUSES) award.

The researchers tested identical brass devices purchased from a local hardware store by subjecting the pieces to the Section 8 protocol and to modifications they made to the protocol. They also applied the same tests to a simulated plumbing device made of solid lead.

The results: The Section 8 water samples reacted less, or were less "aggressive," with lead in the plumbing than designers of the standard had intended. The researchers found other problems that stemmed from calculations that underlie some of the test results. Normalization factors allow evaluators to estimate actual lead concentrations at the tap, but they are affected by device size. Because of normalization and the non-aggressive waters, the small, simulated device made of pure lead pipe passed the Section 8 leaching test.

The scientists began to scrutinize the Section 8 methods after learning that one of the test solutions contains high concentrations of orthophosphate to buffer the water’s pH. Water utilities use orthophosphate actually to inhibit lead leaching. So, test solutions containing such leaching inhibitors could not react adequately with plumbing and would produce a flawed reading.

"It’s analogous to an automobile crash test using a wall of pillows," Edwards said.

Because lead softens alloys, it is an important component in many plumbing metals. Without adding small quantities of lead, manufacturers could not craft intricate shapes necessary for modern devices. Under certain chemical conditions, such as high acidity or low amounts of carbon dissolved from minerals, the devices can leach significant amounts of that lead into water.

The problem is complex because treatments necessary to treat one water-quality problem, such as bacteria, can have unintended consequences, such as lead leaching.

In the 1986 Safe Drinking Water Act as amended in 1996 (USEPA, 2000), Congress explicitly banned new devices containing pure lead pipe, leaded solders, and brass with more than 8 percent lead content. However, these materials remain installed in older homes.

At the time of the legislation, there were no alternatives for leaded brass, and experts believed it was not feasible to reduce lead content in devices to that in pipes and solder.

Some components are labeled lead-free, even if they contain 7.99 percent lead. Despite such labeling, all brass products that contain lead must pass the Section 8 performance-testing standard.

Recently, legislators have proposed updated laws to allow for modern brass alloys--some containing as little as 0.02 percent lead or less by weight--which could reduce lead leaching considerably.

Joshua Chamot | EurekAlert!
Further information:
http://www.nsf.gov
http://www.vt.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>