Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MBL researchers probe how an ancient microbe thrives and evolves without sex

05.08.2005


A January 2004 finding by biologists at the Josephine Bay Paul Center for Comparative Molecular Biology and Evolution added important evidence to the radical conclusion that a group of diminutive aquatic animals called bdelloid rotifers have evolved for tens of millions of years without sexual reproduction, in apparent violation of the rule that abandonment of sexual reproduction is a biological dead end. Now, MBL scientists are beginning to understand just what’s different about these creatures’ DNA that has enabled them to succeed where other asexual species have failed.



In a paper published in this week’s Proceedings of the National Academy of Sciences (PNAS), MBL scientists Irina R. Arkhipova and Matthew Meselson provide evidence that suggests bdelloid rotifers--which probably gave up sex at least 50 million years ago but have still evolved into 370 species--handle DNA transposons more efficiently than other asexual species. Transposons are small snippets of "junk DNA" that sexual reproduction compensates for, but which often go unchecked and are believed to contribute to mutation (and eventually extinction) in species that reproduce asexually.

To learn more about the bdelloid rotifers’ unique ability to evolve without sex, Arkhipova and Meselson studied portions of different bdelloid rotifer genomes and surveyed the diversity, structural organization, and patterns of evolution of DNA transposons.


The scientists found that DNA transposons in bdelloid rotifers are in a different, perhaps less damaging, location than those found in other creatures. Many bdelloid DNA transposons have the same surrounding sequences, which may indicate preferences for specific locations. Indeed, many of them appear to be located at the tip of the chromosome in an area called the telomere, different from the gene-rich portions of the genome, whereas most species tend to have DNA transposons dispersed throughout their genome.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>