Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologist Discovers What May Be World’s ’Pickiest’ Mates

03.08.2005


Photo of male California fiddler crab
Credit: Catherine deRivera


California fiddler crabs may be among the world’s pickiest animal when it comes to selecting a mate.

A study conducted by a biologist at the University of California, San Diego that appears in the August issue of the journal Animal Behaviour found that females of the species Uca crenulata may check out 100 or more male fiddler crabs and their burrows before finally deciding on a mate.

“As far as I know, no other species has been observed sampling nearly as many candidates as the California fiddler crab,” said Catherine deRivera, who conducted the study while a doctoral student and a lecturer at UCSD. She is now a research biologist at the Aquatic Bioinvasions Research and Policy Institute, a joint entity of the Smithsonian Environmental Research Center and Portland State University.



deRivera and a group of UCSD students who assisted her conducted their observations in the Sweetwater River estuary in Chula Vista, south of San Diego, near the Mexico-U.S. border. She said previous studies of mate selection in other animals, such as birds and the natterjack toad, found that females of most species typically sampled only a handful of potential mates before making a final selection.

“Most animals sample just a few mates, presumably because search costs override the benefits of lengthy searches,” she said in her paper. But female California fiddler crabs are much pickier, she discovered in her study, checking out male suitors and their bachelor pads an average of 23 times before making a final selection. One particularly choosy crab visited 106 male burrows, fully entering 15 of them, during her one hour and six minute search.

Why are female fiddler crabs so picky? The survival of their offspring, deRivera found in her experiments, appears to be strongly linked to the size of their mate and, more importantly, his corresponding abode.

“The size of the male’s burrow affects the development time of his larvae,” she said. “A burrow of just the right size allows larvae to hatch at the safest time, the peak outward nighttime flow of the biweekly tidal cycle.”

“Wide burrows speed incubation, so they cause the larvae to hatch too early and miss the peak tides. This research provides one of the first examples of how choosy resource selection can help offspring survivorship.”

Male fiddler crabs attract suitors by standing in front of their burrows and waving their enlarged claws at prospective female passers by, much as humans motions “come here” with their arms and hands

“The California fiddler crabs use a lateral wave that looks much like a human beckoning ’come here’,” deRivera said. “It also seems to serve as a ’come hither’ signal, as a male waves, standing at his burrow entrance, and interested females come over.”

Interested females initially eye the males, who select their burrows based upon their body size, and if they’re interested, partially or fully enter a burrow to size it up.

“The burrow openings, which are circular, are just big enough for the owners to get in,” deRivera said. “Crabs enter burrows sideways so have to fit in front to back and top to bottom.”

When a female has found a mate and burrow to her liking, typically one that is about the same size as she, either she or the male will plug up the opening of the burrow and the couple will mate and incubate their eggs, which later hatch and release tiny crab larvae that are quickly flushed from the estuary by high night tides.

deRivera found that larger female crabs couldn’t be as picky about choosing mates as their smaller counterparts. They took less time, she noted, because they entered fewer burrows, primarily because many of the burrows they passed were too small to accommodate them and successfully incubate their eggs and release their larvae.

“Larvae were successfully released during high-amplitude nocturnal tides only when females incubated in burrows that allowed the larvae to exit the estuary swiftly and thus reduce predation risk, but not when females incubated in burrows that were too wide or narrow,” deRivera writes in her paper. “The effect of burrow aperture on incubation duration may explain why females sampled many male burrows as they searched for a mate and why females of different size classes selected and sampled differently.”

Comment: Catherine deRivera (503) 725-9798, derivera@pdx.edu, derivera@si.edu
Media Contact: Kim McDonald (858) 534-7572

Catherine deRivera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>