Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corn fungus is nature’s master blaster

26.07.2005


Biologists have discovered that a common corn fungus is by far nature’s most powerful known cannoneer, blasting its spores out with a force of 870,000 times the force of gravity. Farmers need not worry about being nailed by a fungal supergun, however. The infinitesimal spore travels only two-tenths of an inch (5 millimeters) before plummeting.



Nevertheless, said the biologists, the fungus Gibberella zeae outguns the previous record holder, the fungus Pilobolus, by almost a hundred-fold. It also outperforms a rifle, which launches its bullet with less than one-tenth that acceleration.

The researchers -- Frances Trail and Iffa Gaffoor of Michigan State University, and Steven Vogel of Duke University -- published their findings in the June 2005 issue of Fungal Genetics and Biology. The study was supported by the U.S. Department of Agriculture and the Michigan Agricultural Experiment Station.


According to Vogel, the "bioballistics" of the fungus offers a dramatic lesson in the physics of scaling. At the infinitesimal scale of the fungus’ spore, atmospheric drag plays an enormous role -- hence the need for an extremely high ejection speed to achieve even the most modest dispersal of its spore.

"To get a literal feel for a world in which drag makes more impact than does gravity, just inflate a six-inch balloon and throw it as hard as you can," said Vogel.

The purpose of the study that revealed the fungus’s extraordinary launch capabilities was to better understand the biological mechanism behind the fungal supergun. Basically, the gun is powered by the buildup of pressure inside the spore-containing fungal fruiting body, called the perithecium, due to the ability of sap to create an osmotic pressure. Such pressure is due to water flowing across a membrane into the perithecium as it tries to equalize the concentration of a salt solution inside the chamber. In the case of the fungus, at question was whether the sugar mannitol or potassium ions were responsible for the osmotic pressure that generated the propulsive force.

In their experiments, Trail and Gaffoor created a fungal "shooting gallery" consisting of a small glass chamber, in which they mounted a block of gel-like agar containing mature perithecia. They arranged the agar so that the perithecia would launch their spores onto a removable glass cover slip. The researchers measured the length of the fungal blasts and calculated the mass of the spore. That mass turned out to be very low for a fungal spore, explaining why the fungus could achieve such extraordinary launch speeds, said Vogel. He fed data from the laboratory experiments and spore mass calculations into a computer program he had developed to determine the ballistics of such projectiles. One result was the record acceleration of 870,000 times gravity for the spores and a launch speed of nearly 80 miles an hour.

The analysis of the fungal shooting ability led the biologists to determine that the osmotic pressure from potassium, and not the mannitol, likely generated the force necessary for the powerful blast.

Vogel said he originally created the bioballistics program to demonstrate to his undergraduate classes how drag and other factors affect the trajectories of natural projectiles -- from kangaroo rats to locusts to fleas to fungal spores.

"The big animals aren’t so interesting in terms of drag," said Vogel. "But when you get down to a flea, it loses about eighty percent of potential range to drag. And the optimum launch angle gets lower. In physics class, people are taught that the best angle is forty-five degrees, but when drag is bad, the angle needs to be lower -- you want to achieve some distance while you still have decent speed. Altitude no longer gives much advantage. Thus, in the fungus the launch angle is barely above horizontal," he said.

"An obvious question is why the fungus even bothers. Given the short range of its spores, why bother accelerating to eighty miles per hour to go a mere five millimeters?," said Vogel. "Since there is almost no air movement at the surface where the spore grows, the real object of the launch is to get the spore even a little ways from the parent, so that it can get into air currents, which will really give the spore some range."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>